XU Jian, LI Qiang, YANG Zhen
(College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)
Abstract: Airbag buffer process was analyzed with the aid of aerodynamic and thermodynamic methods. Based on the current structure of the airbag, the terminal velocity was too high. Therefore, the research on the diameter and height of the airbag was done and the feasible design area was found. With the optimized structure parameters, the airbag buffer experiment under normal conditions was conducted. Furthermore, the residual height and internal pressure of the airbag as well as the terminal velocity and acceleration of the airdrop were obtained. The experiment results show that the optimized airbag is feasible for 20 t cargo airdrop.
Key words: airdrop adaptability; airbag; terminal velocity
CLD number: TJ02Document code: A
Article ID: 1674-8042(2015)03-0247-06 doi: 10.3969/j.issn.1674-8042.2015.03.008
References
[1] WANG Ya-wei, YANG Chun-xin, KE Peng. Airbag cushion process simulation for cargo airdrop system. Journal of System Simulation, 2007, 19(7): 3176-3179.
[2] FU Xin-hua, LUO Bei-guo, FU Xin-bing. Design on virtual simulation verification platform of airdrop adaptability of airborne equipment. In: Proceedings of International Symposium on Instrumentation & Measurement, Sensor Network and Automation, Toronto, Canada, 2013: 955-958.
[3] HONG Huang-jie, WANG Hong-yan, HAO Gui-xiang. Simulation and analysis of landing cushion process for airborne vehicle and airbag. Journal of Academy of Armored Force Engineering, 2010, 24(4): 33-36.
[4] DU Zhi-qi, SHAO Peng. Dynamic finite element simulation of the aluminum alloy hull at landing. Acta Armamentarii, 2009, 31(1): 1-5.
[5] LU Zhe-yuan, WANG Hong-yan, NIU Si-bo, et al. Study on cushioning characteristics of airbag for heavy equipment recovery system. Journal of Academy of Armored Force Engineering, 2010, 24(1): 25-28.
[6] YIN Han-feng, WEN Gui-lin, HAN Xu. Optimal design of airbag impact attenuation system for airdropping equipment. Journal of System Simulation, 2008, 20(5): 1325-1327.
[7] Lee C T. Adaptive backstepping integral control of a small-scale helicopter for airdrop missions. Asian Journal of Control, 2010, 12(4): 531-541.
[8] Michael W. Real-time system identification for an adaptive MPC autonomous airdrop system. In: Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology Conference, Seattle, WA, 2009.
超重装备空投适应性的仿真与优化
徐健, 李强, 杨臻
(中北大学 机电工程学院, 山西 太原 030051)
摘要:采用气体动力学和热力学方法对气囊缓冲过程进行了分析。 基于现有的气囊结构, 空投时末端速度过大。 因而, 对气囊直径和高度等参数进行了研究和优化, 找到了可行的设计区域。 利用优化后的结构参数, 对正常工况下的气囊缓冲过程进行了实验, 得到了气囊高度和内压, 空投速度和加速度。 实验结果表明, 利用参数优化后的气囊实现20 t超重装备的空投是可行的。
关键词:空投适应性; 气囊; 末端速度
引用格式: XU Jian, LI Qiang, YANG Zhen. Simulation and optimization for airdrop adaptability of overweight equipment. Journal of Measurement Science and Instrumentation, 2015, 6(3): 247-252. [doi: 10.3969/j.issn.1674-8042.2015.03.008]
[full text view]