MA Xin-mou1, CHANG Lie-zhen2
(1. College of Mechatronic Engineering, North University of China, Taiyuan 030051, China; 2. School of Science, North University of China, Taiyuan 030051, China)
Abstract: Nonlinear amphibious vehicle rolling under regular waves and wind load is analyzed by a single degree of freedom system. Considering nonlinear damping and restoring moments, a nonlinear rolling dynamical equation of amphibious vehicle is established. The Hamiltonian function of the nonlinear rolling dynamical equation of amphibious vehicle indicate when subjected to joint action of periodic wave excitation and crosswind, the nonlinear rolling system degenerates into being asymmetric. The threshold value of excited moment of wave and wind is analyzed by the Melnikov method. Finally, the nonlinear rolling motion response and phase portrait were simulated by four order Runge-Kutta method at different excited moment parameters.
Key words: amphibious vehicle; nonlinear rolling motion; Melnikov method; nonlinear dynamics; crosswind load
CLD number: TJ811+.6 Document code: A
Article ID: 1674-8042(2015)03-0275-07 doi: 10.3969/j.issn.1674-8042.2015.03.013
References
[1] Chun H H, Ahn B H, Cha S M. Self-propulsion test and analysis of an amphibious tracked vehicle with waterjet. In: Proceedings of World Maritime Technology Conference and SNAME Annual Meeting, USA, 2003.
[2] Sticker J G, Becnel A J, Purnell J G. Advanced waterjet systems. Naval Engineers Journal, 1994, 106 (5): 100-109.
[3] Helvacioglu S, Helvacioglu I H, Tuncer B. Improving the river crossing capability of an amphibious vehicle. Ocean Engineering, 2011, 38(17/18): 2201- 2207.
[4] Spyrou K J, Cotton B, Gurd B. Analytical expressions of capsize boundary for a ship with roll bias in beam waves. Journal of Ship Research, 2002, 46(3): 125-135.
[5] Neves M A S, Rodriguez C A. On unstable ship motions resulting from strong non-linear coupling. Ocean Engingeering, 2006, 33(13/14): 1853-1883.
[6] Falzarano J M. Predicting complicated dynamics leading to vessel capsizing. Ann Arbor: University of Michigan, 1990.
[7] Falzarano J M, Shaw S W, Troesch A W. Application of global methods for analyzing dynamical systems to ship rolling motion and capsizing. International Journal of Bifurcation and Chaos, 1992, 2: 101-115.
[8] WU Wan, McCue L. Application of the extended Melnikov’s method for single-degree-of-freedom vessel roll motion. Ocean Engineering, 2008, 35(1): 1739-1746.
[9] Ueno K, Kimura N, Amagai K. Estimation of coefficients of the equation of nonlinear roll motion for fishing boats by improved energy method and genetic algorithm. Japan Journal of Industrial and Applied Mathematics, 2003, 20(2): 155-192.
[10] Jang T S, Choi H S, Han S L. A new method for detecting non-linear damping and restoring forces in non-linear oscillation systems from transient data. International Journal of Non-Linear Mechanics, 2009, 44(7): 801-808.
[11] MA Xin-mou, PAN Yu-tian, CHANG Lie-zhen, et al. Study on nonlinear rolling motion dynamics of amphibious combat weapon. Journal of Gun Launch & Control, 2010, (4): 66-69.
[12] MA Xin-mou, PAN Yu-tian, CHANG Lie-zhen, et al. Lyapunov characteristic exponents for analyzing the nonlinear rolling motion of amphibious vehicle. Journal of North University of China (Natural science edition), 2011, 32(4): 448-453.
[13] MA Xin-mou, PAN Yu-tian, CHANG Lie-zhen. Estimated nonlinear damping coefficients of amphibious vehicle roll motion. Journal of Ship Mechanics, 2013, (5): 488-493.
[14] MA Xin-mou, CHANG Lie-zhen, HOU Hong-hua. Research on dynamics parameters identification for amphibious vehicle nonlinear rolling motion. Journal of North University of China (Natural science edition), 2015, 36(2): 134-139.
[15] LIU Ya-chong, HU An-kang, HAN Feng-lei, et al. Stability analysis of nonlinear ship-roll dynamics under wind and wave. Chaos, Solitons & Fractals, 2015, 76: 32-39.
[16] Manucharyan G V, Mikhlin Y V. The construction of homoclinic and heteroclinic orbits in non-linear systems. Applied Mathematics and Mechanics, 2005, 69: 39-48.
风浪激励下的两栖车辆非线性横摇动力学研究
马新谋1, 常列珍2
(1. 中北大学 机电工程学院, 山西 太原 030051; 2. 中北大学 理学院, 山西 太原 030051)
摘要:采用单自由度系统研究了两栖车辆在规则波浪和风载荷激励下的非线性横摇动力学, 建立了考虑非线性阻尼和非线性恢复力矩的非线性横摇动力学方程。 非线性横摇动力学方程对应的哈密尔顿函数表明, 当只有波浪扰动力矩作用时, 非线性横摇运动是对称的; 当有风载荷作用时, 两栖车辆的非线性横摇运动不在对称。 采用梅尔尼科夫法给出了激励幅值的阈值范围。 最后, 采用四阶龙格库塔法对两栖车辆的非线性横摇运动方程在不同的外载荷参数下进行数值积分。 结果表明, 两栖车辆横摇在风浪联合作用下表现出明显的非线性特性。
关键词:两栖车辆; 非线性横摇; 梅尔尼科夫法; 非线性动力学; 侧风载荷
引用格式:MA Xin-mou, CHANG Lie-zhen. Investigation on nonlinear rolling dynamics of amphibious vehicle under wind and wave load. Journal of Measurement Science and Instrumentation, 2015, 6(3): 275-281. [doi: 10.3969/j.issn.1674-8042.2015.03.013]
[full text view]