WANG Feng, BAI Yuan-qi
(School of Information and Communication Engineering, North University of China, Taiyuan 030051, China)
Abstract: The paper proposes four indicators to guide sensors layout in practical experiment on explosion overpressure filed construction based on tomographic method with high reconstruction accuracy and the least sensors. First, genetic algorithm is adopted to conduct global search and sensor layout optimization method is selected to satisfy four indicators. Then, by means of Matlab, the variation of these four indicators with different sensor layouts and reconstruction accuracy are analyzed and discussed. The results indicate that the sensor layout method proposed by this paper can reconstruct explosion overpressure field at the highest precision by a minimum number of sensors. It will guide actual explosion experiments in a cost-effective way.
Key words: explosion overpressure field; genetic algorithm; sensor layout optimization; travel time tomography
CLD number: TP212.9Document code: A
Article ID: 1674-8042(2015)04-0307-08 doi: 10.3969/j.issn.1674-8042.2015.04.001
References
[1]LIU Yan, LIU Gui-jie, LIU Bo. Research status and prospect on optimal placement of sensor. Transducer and Microsystem Technologies, 2010, (11): 4-6.
[2]ZHOU Lei. Optimal disposition of multi-sensor based on genetic algorith. Chengdu: Univercity of Electronic Science and Technology of China, 2012.
[3]TANG Fei, TENG Hong-fei. A modified genetic algorithm and its application to layout optimization. Journal of software, 1999, 10(10): 1096-1102.
[4]HUANG Liang. Methodology and experiment research on concrete ultrasonic computerized tomography. Hu’nan: Hunan University, 2008: 5.
[5]Wéber Z. Optimizing model parameterization in 2D linearized seismic traveltime tomography. Physics of the Earth and Planetary Interiors, 2001, 124(1): 33-43.
[6]Curtis A, Snieder R. Reconditioning inverse problems using the genetic algorithm and revised parameterization. Geophysics, 1997, 62(5): 1524-1532.
[7]CHENG Gu. Theory and application of seismic reflection tomography when walking. Shanghai: Tongji University, 2004.
[8]Passerini C, Falciasecca G. Modeling of orthogonality factor using ray-tracing predictions. IEEE Transactions on Wireless Communications, 2004, 3(6): 2051.
[9]Vesnaver A. Null space reduction in the lineearized tomographic inversion. Modern Approaches in Geophysics, 1995, 12: 139-145.
爆炸超压场重建的传感器布局优化
王凤, 白原齐
(中北大学 信息与通信工程学院, 山西 太原 030051)
摘要:本文提出了4个指导传感器分布的指标, 结合走时层析成像技术重建爆炸超压场, 在满足重建精度的前提下最大程度地减少传感器数目。 首先采用遗传算法全局搜索出满足这4个指标的传感器的分布方案; 然后通过MATLAB模拟仿真, 并对不同传感器布局方式下这4 个指标的变化规律及重建精度进行了分析和讨论; 结果表明, 采用本文所提出的传感器分布方案可以用最少数目的传感器重建出最高精度的爆炸场, 进而为实际爆炸试验节省费用。
关键词:爆炸超压场; 遗传算法; 传感器优化布局; 走时层析
引用格式:WANG Feng, BAI Yuan-qi. Sensors layout optimization in explosion overpressure field reconstruction. Journal of Measurement Science and Instrumentation, 2015, 6(4): 307-314. [doi: 10.3969/j.issn.1674-8042.2015.04.001]
[Full text view]