LIU Lin1, TIAN Xiao-li1, GAO Xiao-dong2, GAN Tao-yuan2, SHE Xin-ji2
(1. College of Mechatronic Engineering, North University of China, Taiyuan 030051, China; 2.Yuxi Industrial Group Co., Ltd., Nanyang, 473000, China)
Abstract: Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algorithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm.
Key words: projectile aerodynamic parameters; parameter optimization; hybrid genetic algorithm
CLD number: TJ413 Document code: A
Article ID: 1674-8042(2015)04-0364-04 doi: 10.3969/j.issn.1674-8042.2015.04.010
References
[1]WAN Min, WANG Xiao-peng. A genetic algorithm based identification method for dynamical systems. Flight Dynamics, 2003, 21(2): 56-58.
[2]LI Xu-wu, WANG Xiao-ping. Genetic algorithm-theory, application and software to achieve. Xi’an: Xi’an Jiaotong University Press, 2002.
[3]CAI Jin-shi. Identification of aircraft systems. Beijing: Aerospace Press, 1995.
[4]HAN Zi-peng. Rocket exterior ballistics. Beijing: Beijing Institute of Technology Press, 2008.
[5]ZHOU Ming-sun, SHU dong. Principle and application of genetic algorithm. Beijing: National Defense Industry University Press, 1998.
[6]WANG Hai-tao, GUO Shu-wei, GUO Peng, et al. Application of genetic algorithms for aerodynamic parameter estimation of large parachute. Journal of Astronautics, 2010, 31(4): 981-985.
[7]JI Ya-xin. Study on the optimization method of the aerodynamic parameters of projectile and rocket. Taiyuan: North University of China, 2013: 29-50.
[8]LIU Shu. Investigation on methods of characteristic parameters identification using flight data for projectiles. Taiyuan: North University of China, 2013: 40-65.
[9]BAI Ge, ZHANG Hai-tao, LIU Cui-ping, et al.WSN broadcast algorithm based on genetic simulated annealing algorithm. Computer Measure and Control, 2013, 21(11): 3053-3056.
基于混合遗传算法的弹箭气动参数优化
刘霖1, 田晓丽1, 高小东2, 甘桃元2, 佘新继2
(1. 中北大学 机电工程学院,山西 太原 030051; 2. 豫西工业集团有限公司, 河南 南阳 473000)
摘要:弹箭气动参数是影响弹箭飞行运动的重要因素。 在弹箭气动参数优化过程中, 传统优化方法容易陷入局部最优解。 为此, 提出了混合遗传算法用于弹箭参数优化。 它将传统模拟退火方法与遗传算法全局搜索能力相结合。 仿真结果表明, 混合基因算法比单一算法优化效果好。
关键词:弹箭气动参数; 参数优化; 混合遗传算法
引用格式:LIU Lin, TIAN Xiao-li, GAO Xiao-dong, et al. Optimization of projectile aerodynamic parameters based on hybrid genetic algorithm. Journal of Measurement Science and Instrumentation, 2015, 6(4): 364-367. [doi: 10.3969/j.issn.1674-8042.2015.04.010]
[Full text view]