此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Dynamic compensation and its application of shock wave pressure sensor

 

XIA Yong-le, ZHAI Yong

 

(Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China)

 

Abstract: In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor’s dynamic model on compensation results, a dynamic compensation method of the pressure sensor is presented, which is based on quantum-behaved particle swarm optimization (QPSO) algorithm and the mean square error (MSE). By using this method, the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got. This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain. The results show that the working bandwidth of the sensor is extended effectively. This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments. 

 

Key words: pressure sensor; dynamic compensation; quantum-behaved particle swarm optimization (QPSO); shock wave test; band expansion

 

CLD number: TP274           Document code: A

 

Article ID: 1674-8042(2016)01-0048-06       doi: 10.3969/j.issn.1674-8042.2016.01.010

 

References

 

[1] ZHANG Zhi-jie, WANG Dai-hua, WANG Wen-lian, et al. Shock wave pressure measurement system function with wireless data transmission and control. Metrology & Measurement Technology, 2010, 30(1): 22-25.
[2] YOU Wen-bin, MA Tie-hua, DING Yong-hong, et al. Dynamic modeling and application of shock wave testing system. Chinese Journal of High Pressure Physics, 2014, (4): 429-434.
[3] YE Xiang-bin, ZHANG Wen-na. Analysis and improvement for dynamic performance of pressure sensor. Journal of Transducer Technology, 2002, 21(2): 11-14.
[4] HUANG Zheng-ping. Explosion and shock electrical measurement technology. Beijing: Defense Industry Press, 2006: 26-49.
[5] LIU Qing, CAO Guo-hua. Study on dynamic compensation method for micro-silicon accelerometer based on swarm optimization algorithm. Chinese Journal of Scientific Instrument, 2006, 27(12): 1707-1710.
[6] XUAN Chun-qing, XUAN Zhi-wei, CHEN Bao-li. Dynamic compensation method based on least squares algorithm and particle swarm optimization for pressure sensor. Chinese Journal of Sensors and Actuators, 2014, (10): 1363-1367.
[7] WU Jian, ZHANG Zhi-jie, WANG Wen-lian. FPGA Implementation of high speed parallel correction for sensor’s dynamic error. Journal of Transduction Technology, 2012, 25(1): 67-71.
[8] GUO Hui-ling, LI Wei. Dynamic compensation of sensors based on QPSO algorithm and its FPGA implementation. Computer Measurement & Control, 2014, 22(1): 178-180.
[9] QIN Feng, XIA Xuan, XU Xiao-quan. Rule reduction in fuzzy reasoning. Advances in Mathematics, 2011, (4): 457-470.
[10] Arfia F B, Messaoud M B, Abid M. Nolinear adaptive filters based on particle swarm optimizer. Leonardo Journal of Sciences, 2009, 5: 244-251.
[11] CHEN Jie, PAN Feng, CAI Tao. Acceleration factor harmonious particle swarm optimizer. International Journal of Automation and Computing, 2006, 3(1): 41-46.
[12] MU Ge, LI Qiao-li, MENG Qing-jun, et al. System modeling. Beijing: Defense Industry Press, 2013: 166-174.


  
 冲击波压力传感器动态特性补偿及其应用

 

 夏永乐, 翟 永

 

   (中北大学  电子测试技术重点实验室, 山西 太原 030051)

 

 摘 要: 为修正压力传感器动态特性引起的测试误差, 避免传感器动态建模误差影响补偿结果, 提出了一种基于量子粒子群优化(QPSO)算法和均方误差的传感器动态补偿方法。 通过对传感器进行逆建模, 寻优得到了最优阶次的补偿器系数, 利用激波管动态校准实验对该方法进行了验证, 分析了补偿前后传感器的时域与频域特性。 结果表明, 该方法有效扩展了传感器的工作频带; 在实弹测试中, 减小了动态测量误差, 提高了测试精度。

 

关键词: 压力传感器; 动态补偿; QPSO算法; 冲击波测试; 频带拓宽

 

引用格式: XIA Yong-le, ZHAI Yong. Dynamic compensation and its application of shock wave pressure sensor. Journal of Measurement Science and Instrumentation, 2016, 7(1): 48-53. [doi: 10.3969/j.issn.1674-8042.2016.01.010]
 

 

[full text view]