KOU Zhi-wei1,2, CAO Hui-liang1,2, SHI Yun-bo1,2, LIU Jun1,2, TANG Jun1,2
(1. Science and Technology on Electronic Test & Measurement Laboratory,North University of China,Taiyuan 030051,China;2. Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, Taiyuan 030051, China)
Abstract: MEMS gyroscope is a new inertial navigation sensor, which can measure the input angular rate of sensitive axis using Coriolis effect. Compared to the conventional gyroscope, it owns many unique advantages. A novel structure of vibrating ring gyroscope is proposed and the finite element model of the oscillator is established based on MEMS technology. Through the modal analysis, the natural frequency and mode shapes of the oscillator are obtained. By analyzing the effects of the structural parameters on the mode shapes and frequency of the harmonic oscillator, the optimal design parameters are got. The frequency difference between the operating mode and the other modes is greater than 1 kHz after optimization, which can avoid the frequency coupling of the operating mode and other vibrating modes of the oscillator. The simulation results show that the performance parameters of the ring structure meet the design requirements and have obvious advantages.
Key words: MEMS; vibrating ring gyroscope; inertial sensor; angular rate; solid wave gyroscope
CLD number: TP212 Document code: A
Article ID: 1674-8042(2016)01-0078-06 doi: 10.3969/j.issn.1674-8042.2016.01.015
References
[1] WANG Ming-jia, ZHANG Xu-guang, HAN Yan-jie. Elimination of impulse noise by auto-adapted weight filter. Optics and Precision Engineering, 2007, 15(5): 779-783.
[2] FAN Shang-chun, WANG Lü-da, GUO Zhan-she. Design and simulation of novel MEMS resonant gyroscope. Journal of Chinese Inertial Technology, 2009, 17(1): 63-66.
[3] CAO Hui-liang, LI Hong-sheng, WANG Shou-rong, et al. Structure model and system simulation of MEMS gyroscope. Journal of Chinese Inertial Technology, 2013, 21(4): 524-529.
[4] Ayazi F, Najafi K. A Harpss polysilicon vibrating ring gyroscope. Journal of Microelectromechanical Systems, 2001, 10(2): 169-179.
[5] Yoon S, Park U, Rhim J, et al. Tactical grade MEMS vibrating ring gyroscope with high shock reliability. Microelectronic Engineering, 2015, 142: 22-29.
[6] CHEN Li, CHEN De-yong, WANG Jun-bo, et al. Mathematical modeling and optimization design of an electromagnetic micro-machined vibrating ring gyroscope. Nano Technology and Precision Engineering, 2009, 7(3): 233-238.
[7] XIA Dun-zhu, YU Cheng, KONG Lun. The development of micromachined gyroscope structure and circuitry technology. Sensors, 2014, 14(1): 1394-473.
[8] Sang W Y, Lee S, Najafi K. Vibration sensitivity analysis of MEMS vibratory ring gyroscopes. Sensors & Actuators A Physical, 2011, 171(2): 163-177.
[9] Hu Z X, Gallacher B J, Burdess J S, et al. A parametrically amplified MEMS rate gyroscope. Sensors & Actuators A Physical, 2011, 167(2): 249-260.
[10] WU Qi, LIN Jing, YANG Jiang-tao, Design and simulation of a MEMS high-g acceleration sensor. Transducer and Microsystem Technologies, 2014, 33(9): 77-80.
环形波动陀螺结构设计与仿真
寇志伟1,2, 曹慧亮1,2, 石云波1,2, 刘 俊1,2, 唐 军1,2
(1. 中北大学 电子测试技术重点实验室, 山西 太原 030051; 2. 中北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 030051)
摘 要: 基于MEMS技术, 提出了一种环形波动陀螺结构并建立了谐振子的有限元模型。 利用ANSYS软件对谐振子进行了模态分析, 确定了各阶振型和固有频率。 通过分析谐振子结构参数对振型和频率的影响, 得到了谐振子的优化设计参数, 优化后其工作频率与其他振型频率的差大于1 kHz, 有效避免工作模态与其他模态间的频率耦合。 经仿真验证, 设计的环形结构的性能参数满足要求, 具有明显的优越性。
关键词: MEMS; 环形波动陀螺; 惯性传感器; 角速率; 固态波动陀螺
引用格式: KOU Zhi-wei, CAO Hui-liang, SHI Yun-bo, et al. Structure design and simulation of MEMS vibrating ring gyroscope. Journal of Measurement Science and Instrumentation, 2016, 7(1): 78-83. [doi: 10.3969/j.issn.1674-8042.2016.01.015]
[full text view]