WANG Li-mei1, WANG Zhao-ba1, LU Xu2
(1. Science and Technology on Electronic Test & Measurement Laboratory, North University of China,Taiyuan 030051,China; 2. Xi’an North Huian Chemical Industries Co., Ltd., Xi’an 710302, China)
Abstract: The sensitivity of collinear nonlinear nondestructive testing technique based on harmonic detection is high, but the results are vulnerable to interference from other nonlinear of experiment sources, which leads to this technology limited in industrial applications. To solve this problem, a non-collinear nonlinear ultrasonic testing experimental system is established based on non-collinear beam mixing technology. The non-collinear nonlinear response is observed in the steel and LY12 aluminum alloy. The results show that: ① Based on the benefits of space selection, mode conversion, frequency and steerable optional of non-collinear beam mixing technology, the interference of system nonlinear effects can be suppressed effectively; ② Mode conversion and beam mixing are present in steel and LY12 aluminum alloy, and the non-collinear non-linear response of LY12 aluminum alloy is stronger than steel and the measurement results are more obvious; ③ The technology has the feasibility to evaluate the uniformity of material internal.
Key words: nonlinear spatial distribution; nonlinear ultrasonic evaluation technology; non-collinear beam mixing
CLD number: TB31Document code: A
Article ID: 1674-8042(2016)02-0155-06 doi: 10.3969/j.issn.1674-8042.2016.02.010
References
[1]YAN Da-wei, Neild S A, Drinkwater B W. Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive joints. NDT & E International, 2009, 5(42): 459-466.
[2]Hillis A J, Vilcox P D. Global crack detection using bispectral analysis. In: Proceedings of the Royal Society London A: Mathematical Physical & Engineering Sciences, 2006, 462(2069): 1515-1530.
[3]Balasubramaniam K, Valluri J S, Prakash R V. Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Materials Characterization, 2011, 62(3): 275-286.
[4]Viswanath A, Rao B P C, Mahadevan S, et al. Nondestructive assessment of tensile properties of cold worked AISI type 304 stainless steel using nonlinear ultrasonic technique. Journal of Materials Processing Technology, 2011, 211(3): 538-544.
[5]Payan C, Carnier V, Moysan J, et al. Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. The Journal of the Acoustical Society of America, 2007, 121(4): 125-130.
[6]JIAO Jian-ping, Drinkwater B W, Neild S A. Low-frequency vibration modulation of guided waves to image nonlinear scatterers for structure health monitoring. Smart Materials and Structures, 2009, 18(6): 367-371.
[7]Croxford A J, Wilcox P D, Drinkwater B, et al. The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. Journal of the Acoustical Society of America, 2009, 126(5): 117-122.
[8]LIU Si-ming, PENG Di, ZHAO Han-xue. Experimental observation of noncollinear nonlinear response of SiCp reinforced aluminum matrix composites. Journal of Mechanical Engineering, 2012, 48(2): 21-26.
[9]Koissin V, Demceko A, Korneev V A. Isothermal epoxy-cure monitoring using nonlinear ultrasonics. International Journal of Adhesion & Adhesives, 2014, 52: 11-18.
[10]Jones G L, Kobett D R. Interaction of elastic waves in an isotropic solid. The Journal of the Acoustical Society of America, 1963, 35(1): 5-10.
钢和LY12铝合金的非共线非线性特性
王丽梅1, 王召巴1, 路旭2
(1. 中北大学 电子测试技术重点实验室, 山西 太原 030051; 2. 西安北方惠安化学有限公司, 陕西 西安 710302)
摘要:本文基于非共线波束混叠技术, 建立了一种非共线非线性超声检测实验系统, 分别观察了钢和LY12铝合金的非共线非线性响应。 实验结果表明: ① 利用非共线波束混叠技术的空间可达、 波型转换及频率方向可控等性质, 可以达到有效抑制系统非线性干扰的效果; ② 钢和LY12铝合金试块内部均存在波型转换与波束混叠现象, LY12铝合金比钢具有更强烈的非共线非线性响应, 测量结果更明显; ③ 从实验上证明了该技术具有检测材料内部均匀性的能力。
关键词:非线性空间分布; 非线性超声评价技术; 非共线波束混叠
引用格式:WANG Li-mei, WANG Zhao-ba, LU Xu. Non-collinear nonlinear properties of steel and LY12 aluminum alloy. Journal of Measurement Science and Instrumentation, 2016, 7(2): 155-160. [doi: 10.3969/j.issn.1674-8042.2016.02.010]
[full text view]