LIU Yi, CHEN Yan, GUI Zhi-guo
(Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China)
Abstract: The gradient image is always sensitive to noise in image detail enhancement. To overcome this shortage, an improved detail enhancement algorithm based on difference curvature and contrast field is proposed. Firstly, the difference curvature is utilized to determine the amplification coefficient instead of the gradient. This new amplification function of the difference curvature takes more neighboring points into account, it is therefore not sensitive to noise. Secondly, the contrast field is nonlinearly amplified according to the new amplification coefficient. And then, with the enhanced contrast field, we construct the energy functional. Finally, the enhanced image is reconstructed by the variational method. Experimental results of standard testing image and industrial X-ray image show that the proposed algorithm can perform well on increasing contrast and sharpening edges of images while suppressing noise at the same time.
Key words: image enhancement; contrast field; difference curvature; variational enhancement scheme
CLD number: TN911.73 Document code: A
Article ID: 1674-8042(2016)03-0247-08 doi: 10.3969/j.issn.1674-8042.2016.03.007
References
[1] Hwang H, Haddad R A. Adaptive median filters: new algorithms and results. IEEE Transactions on Image Processing, 1995, 4(4): 499-502.
[2] Jenifer S, Parasuraman S, Kadirvelu A. Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Applied Soft Computing, 2016, 42: 167-177.
[3] SHI Liang-shu, YANG Ji-hong, ZHAN Ying, et al. Remote sensing image enhancement based on contextual adaptive contrast equalization. Chinese Journal of Stereology & Image Analysis, 2014, 19(1): 11-16.
[4] Ferrari J A, Flores J L. Nondirectional edge enhancement by contrast-reverted low-pass Fourier filtering. Applied Optics, 2010, 49(17): 3291-6.
[5] BAI Xiang-shi, ZHOU Fu-gen, XUE Bin-dang. Noise-suppressed image enhancement using multiscale top-hat selection transform through region extraction. Applied Optics, 2012, 51(3): 338-47.
[6] Viekers V E. Plateau equalization algorithm for real-time display of high-quality infrared imagery. Optical Engineering, 1996, 35(7): 1921-1926.
[7] CHEN Qian, BAI Lian-fa, ZHANG Bao-min, et al. Histogram double equalization in infrared image. Infrared Millimeter and Waves, 2003, 22(6): 428-430.
[8] LAI Rui, YANG Yin-tang, WANG Bing-jian, et al. A quantitative measure based infrared image enhancement algorithm using plateau histogram. Optics Communications, 2010, 283(21): 4283-4288.
[9] LIANG Kun, MA Yong, XIE Yue, et al. A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Physics & Technology, 2012, 55(4): 309-315.
[10] David M, Laurent N, Jacques F, et al. Multi-histogram equalization methods for contrast enhancement and brightness preserving. IEEE Transactions on Consumer Electronics, 2007, 53(3): 1186-1194.
[11] WANG Qing, Ward R K. Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Transactions on Consumer Electronics, 2007, 53(2): 757-764.
[12] Navarro L, Deng G, Courbebaisse G. The symmetric logarithmic image processing model. Digital Signal Processing, 2013, 23(5): 1337-1343.
[13] Yang C C. Image enhancement by adjusting the contrast of spatial frequencies. Optik-International Journal for Light and Electron Optics, 2008, 119(3): 143-146.
[14] Yang C C. Image enhancement by the modified high-pass filtering approach. Optik-International Journal for Light and Electron Optics, 2009, 120(17): 886-889.
[15] BAI Xiang-shi, ZHOU Fu-gen, XUE Bin-dang. Image enhancement using multi scale image features extracted by top-hat transform. Optics & Laser Technology, 2012, 44(2): 328-336.
[16] Oliveira M A, Leite N J. A multiscale directional operator and morphological tools for reconnecting broken ridges in fingerprint images. Pattern Recognition, 2008, 41(1): 367-377.
[17] De I, Chanda B, Chattopadhyay B. Enhancing effective depth-of-field by image fusion using mathematical morphology. Image & Vision Computing, 2006, 24(12): 1278-1287.
[18] Wu Y Q, Meng T L, Wu S H. Adaptive image enhancement based on NSST and constraint of human eye perception information fidelity. Journal of Optoelectronics Laser, 2015, 26(5): 978-985.
[19] FU Jian-feng, WANG Rong-gui, ZHANG Xin-long, et al. Study of Retinex algorithm based on human visual property. Journal of Electronic Measurement & Instrument, 2011, 25(1): 29-37.
[20] ZHU Guo-qing, LI Qing-wu, LIN Shao-fei, et al. Infrared image enhancement algorithm based human visual system characteristic via non-subsampled contourlet transform domain. Laser & Optoelectronics Progress, 2015, (1): 49-54.
[21] WANG Chao, YE Zhong-fu. Variational approach to image enhancement and pseudo-color mapping. Journal of Data Acquisition & Processing, 2005, 20(1): 18-22.
[22] WANG Chao, YE Zhong-fu. Varitional enhancement for infrared images. Journal of Infrared and Millimeter Waves, 2006, 25(4): 306-310.
[23] ZHAO Fan, ZHAO Jian, ZHAO Wen-da, et al. Gaussian mixture model-based gradient field reconstruction for infrared image detail enhancement and denoising. Infrared Physics & Technology, 2016, 76: 408-414.
[24] Arriaga-Garcia E F, Sanchez-Yanez R E, Garcia-Hernandez M G. Image enhancement using bi-histogram equalization with adaptive sigmoid functions. In: Proceedings of International Conference on Electronics, Communications and Computers, 2014: 28-34.
[25] LU Yun-wei, CHEN You-rong. The research and realization of image sharpening based on laplace. Computer Knowledge & Technology, 2009, 5(6): 1513-1515.
[26] Spruck J, Socolinsky D A. A variational approach to image fusion. Baltimore: the Johns Hopkins University, 2000.
[27] ZHAO Wen-da, ZHAO Jian, HAN Xi-zhen. Infrared image enhancement based on variational partial differential equations. Chinese Journal of Liquid Crystals and Displays, 2014, 29(2): 281-285.
[28] CHEN Qiang, Montesinos P, SUN Quan-sen, et al. Adaptive total variation denoising based on difference curvature. Image & Vision Computing, 2010, 28(3): 298-306.
[29] Wang J, Li T, Xing L. Iterative image reconstruction for CBCT using edge-preserving prior. Medical Physics, 2009, 36(1): 252-260.
[30] Socolinsky D A. Dynamic range constraints in image fusion and visualization. In: Proceedings of Signal and Image Processing, Las Vegas, 2000.
[31] SHAO Xiao-peng, XIE Wei-long, LIU Fei, et al. The application of information entropy in quality asessment of laser disturbing image. In: Proceedings of Imaging Systems and Applications, 2014.
一种改进的基于差分曲率和对比度场的细节增强算法
刘 祎, 陈 燕, 桂志国
(中北大学 电子测试技术重点实验室, 山西 太原 030051)
摘 要: 针对图像细节增强过程中梯度对噪声敏感的缺点, 本文提出了一种改进的基于差分曲率和对比度场的细节增强算法。首先, 该算法利用差分曲率代替梯度值决定系数的放大倍数, 以差分曲率作为自变量的放大系数函数考虑了更多的邻域像素, 从而克服了图像梯度对噪声敏感的缺点; 然后, 利用该放大系数非线性地放大对比度场, 并构造能量泛函; 最后, 通过变分方法得到增强后的图像。标准测试图像和工业X射线图像的实验结果表明, 本文提出的算法在有效增强图像对比度的同时, 能够较好地抑制噪声。
关键词: 图像增强; 对比度场; 差分曲率; 变分增强方法
引用格式: LIU Yi, CHEN Yan, GUI Zhi-guo. An improved detail enhancement algorithm based on difference curvature and contrast field. Journal of Measurement Science and Instrumentation, 2016, 7(3): 247-254. [doi: 10.3969/j.issn.1674-8042.2016.03.007]
[full text view]