此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Design of increasing controllability of braking vehicle

 

Talkachou Dzianis

 
 
(School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730030, China)
 
 
Abstract: The operating principle of an antilock braking system (ABS) is it compares current value of angular acceleration with the threshold value. The advantage of such system is that enough it has only the angular velocity sensors. The disadvantage is successive overshoot, i.e. successive transition from wheels locking mode to wheels rolling mode. So braking mechanism can’t realize the maximum possible torque in the current road conditions. The idea of increasing the braking effectiveness is the intensity of rising pressure depends on the road conditions. The problem is the torque produced by braking mechanism, current road conditions and the value of traction coefficient is unknown. For evaluation of these parameters built and training three neural networks. A simulator of random road condition’s variation was built to test adequacy of the control unit’s operation in close to real conditions.
 
 
Key words: antilock braking system (ABS); model of braking vehicle; parameter identification; simulation experiment
 
 
CLD number: TP273           Document code: A
 
 
Article ID: 1674-8042(2016)03-0272-07     doi: 10.3969/j.issn.1674-8042.2016.03.011
 
 
References
 
 
[1] LI Fa-zong, HU Ru-fu, YAO Huan-xin. The performance of automobile antilock brake system based on fuzzy robust control. In: Proceedings of IEEE Inernational Conference on Intelligent Computation Technology and Automation, Changsha, 2010, 3: 871-873.
[2] LI Guo, SUN Yan, WANG Hui. The synchronous adaptive fuzzy control for the vehicle steering/Anti-lock Brake System. In: Proceedings of IEEE 32nd Chinese Control Conference, Xi’an, 2013: 3047-3052.
[3] WANG Ji, SONG Chuan-xue, JIN Li-qiang. Modeling and simulation of automotive four-channel hydraulic ABS based on AMESim and Simulink/Stateflow. In: Proceedings of IEEE International Workshop on Intelligent System and Automation, Wuhan, 2010: 1-4.
[4] Aly A A. Intelligent fuzzy control for antilock brake syste with road-surfaces identifier. In: Proceedings of IEEE International Conference on Mechatronics and Automation, Xi’an, 2010, 1(3): 699-705.
[5] Ananenkov A E, Thanh B C, Gerasimov L A, et al. Evaluation of vehicle movement speed by means of the automobile radar data. In: Proceedings of IEEE International Conference on Transparent Optical Networks, Budapest, 2015: 1-4.
[6] Aguilar-Martíneza J, Alvarez-Icazab L. Analysis of tire-road contact area in a control oriented test bed for dynamic friction models. Journal of Applied Research and Technology, 2015, 13(4): 461-462.
[7] CHEN Hua, Ban T, Ishida M, et al. Influential factors on adhesion between wheel and rail under wet conditions. Wear. Quarterly Report of Rtri, 2008, 265(9): 1504-1511.
[8] Lee N J, Kang C G. The effect of a variable disc pad friction coefficient for the mechanic brake system of a railway vehicle. PLoS One, 2015, 10(8): 4-5.
[9] Sugozu I, Mutlu I, Sugozu K B. The effect of ulexite to the tribological properties of brake lining materials. Polymer Composities, 2015, 37(4): 3-5.
[10] ZHANG Jun-zhan, XU Yong-dong, ZHANG Li-tong. Effect of braking speed on friction and wear behaviors of C/C-SiC composites. Applied Ceramic Technology, 2007, 4(5): 463-469.
[11] Mohhamed H A, Yusoff M Z, Hanim S. Fast response surface temperature sensor for hypersonic vehicles. Instruments and Experimental Techniques, 2010, 53(1): 153-159.
 
 
增加车辆刹车可控性设计
 
 
Talkachou Dzianis
 
 
(兰州交通大学 自动化与电气工程学院,  兰州 730030)
 
 
  要: 防抱死制动系统(Antilock braking system, ABS)是通过车轮角加速度与阈限值的比较进行制动力控制。 这种系统的优势是只需角速度传感器信号就足够了; 缺点是工作时会出现制动压力连续的超调, 使车轮从抱死模式到滚动模式来回转换, 这样制动器不能产生在当前道路状况下最大可能的制动力矩值。 增加制动效率的构思是制动压力增加的强度取决于当前道路状况, 但面临的问题是制动器产生的制动力矩值、 当前道路状况和牵引系数值是未知数。 本文通过建立三层神经网络模型来识别和获取这些参数, 并在设计的随机路面上进行仿真实验, 验证了所设计控制器工作的准确性。
 
 
关键词: 防抱死制动系统; 车辆制动模型; 参数识别; 仿真实验
 
 
引用格式: Talkachou Dzianis. Design of increasing controllability of braking vehicle. Journal of Measurement Science and Instrumentation, 2016, 7(3): 272-278. [doi: 10.3969/j.issn.1674-8042.2016.03.011]
 

[full text view]