LIU Wen-yao, ZHAO Miao-miao, GUO Xu-dong, TANG Jun
(Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China)
Abstract: The recent rapid growth in electronics has reached the point where there is a need for solid-state devices with excellent physical flexibility, which will be a significant advantage in modern electronic devices. In particular, metal nanowires and nanoparticles are chosen for electrodes because of their low resistance and high mechanical stability. Among the various alternatives, Ag nanomaterials have recently garnered increasing attention due to the high intrinsic conductivity, a transparency with a low sheet resistance and relatively low cost. We herein summarize recent developments toward flexible electronics on the basis of Ag nanomaterials, which show promising performance and outperform the commonly used. The typical fabrication techniques along with the promising applications for flexible devices, are thoroughly discussed.
Key words: flexible electrodes; Ag nanowire; Ag nanoparticle; solid-state devices
CLD number: O614.122 Document code: A
Article ID: 1674-8042(2016)04-0307-10 doi:10.3969/j.issn.1674-8042-2016-04-001
References
[1]YAN Chao-yi, WANG Jiang-xin, KANG Wen-bin, et al. Highly stretchable piezoresistive graphene nanocellulose nanopaper for strain sensors. Advanced materials, 2014, 26(13): 2022-2027.
[2]WANG Jie, LIANG Ming-hui, FANG Yan, et al. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Advanced Materials, 2012, 24(21): 2874-2878.
[3]SHI Yu-meng, Kim K K, Reina A, et al. Work function engineering of graphene electrode via chemical doping. ACS Nano, 2010, 4(5): 2689-2694.
[4]Lee D, Rho Y, Allen F, et al. Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches. Nanoscale, 2013, 5(22): 11147-11152.
[5]Kwak K, Cho K, Kim S. Stable bending performance of flexible organic light-emitting diodes using IZO anodes. Scientific reports, 2013, 3: 2787.
[6]LAN Ying-feng, CHEN Ying-hung, HE Ju-liang, et al. Microstructural characterization of high-quality indium tin oxide films deposited by thermionically enhanced magnetron sputtering at low temperature. Vacuum, 2014, 107: 56-61.
[7]DING Zhao-qiang, ZHU Yan-ping, Branford W C, et al. Self-assembled transparent conductive composite films of carboxylated multi-walled carbon nanotubes/poly (vinyl alcohol) electrospun nanofiber mats. Materials Letters, 2014, 128: 310-313.
[8]Sagar R U R, ZHANG Xiao-zhong, XIONG Cheng-yue, et al. Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon, 2014, 76: 64-70.
[9]CHEN Tao-hsing, CHEN Ting-you. Effects of annealing temperature on properties of Ti-Ga-Doped ZnO films deposited on flexible substrates. Nanomaterials, 2015, 5(4): 1831-1839.
[10]HE Wei-wei, YE Chang-hui. Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review. Journal of Materials Science & Technology, 2015, 31(6): 581-588.
[11]LIU Yi-kai, SIE Yi-yan, LIU Chia-an, et al. A novel laser direct writing system integrated with a&f xxy alignment platform for rapid fabrication of flexible electronics. Smart Science, 2015, 3(2): 87-91.
[12]HU Liang-bing, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS nano, 2010, 4(5): 2955-2963.
[13]YANG Li-qiang, ZHANG Ting, ZHOU Huang-xin, et al. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS applied materials & interfaces, 2011, 3(10): 4075-4084.
[14]Tokuno T, Nogi M, Karakawa M, et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Research, 2011, 4(12): 1215-1222.
[15]Shin D Y, Yi G R, Lee D, et al. Rapid two-step metallization through physicochemical conversion of Ag2O for printed “black” transparent conductive films. Nanoscale, 2013, 5(11): 5043-5052.
[16]Aziz S, Zhao J, Cain C, et al. Nanoarchitectured LiMn2O4/Graphene/ZnO composites as electrodes for lithium ion batteries. Journal of Materials Science & Technology, 2014, 30(5): 427-433.
[17]ZHU Rui, Chung C H, Cha K C, et al. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano, 2011, 5(12): 9877-9882.
[18]Morgenstern F S F, Kabra D, Massip S, et al. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Applied physics letters, 2011, 99(18): 183307.
[19]Lee S J, Kim Y H, Kim J K, et al. A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale, 2014, 6(20): 11828-11834.
[20]Lee D, Lee H, Ahn Y, et al. High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure. Carbon, 2015, 81: 439-446.
[21]Kim T, Canlier A, Cho C, et al. Highly transparent Au-coated Ag nanowire transparent electrode with reduction in haze. ACS applied materials & interfaces, 2014, 6(16): 13527-13534.
[22]Canlier A, Ucak U V, Usta H, et al. Development of highly transparent Pd-coated Ag nanowire electrode for display and catalysis applications. Applied Surface Science, 2015, 350: 79-86.
[23]CHEN Dustin, LIANG Jia-jie, LIU Chao, et al. Thermally stable silver nanowire-polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. Advanced Functional Materials, 2015, 25(48): 7512-7520.
[24]Seo K W, Kim H K. Plasma damage free sputtering of Ti-doped In2O3 film on Ag nanowire network for transparent and flexible electrodes. Thin Solid Films, 2015, 591: 301-304.
[25]Eom H, Lee J, Pichitpajongkit A, et al. Ag@ Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization. Small, 2014, 10(20): 4171-4181.
[26]LU Hui, LIN Jian, WU Na, et al. Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Applied Physics Letters, 2015, 106(9): 093302.
[27]WU Jung-tang, Hsu S L C, Tsai M H, et al. Direct ink-jet printing of silver nitrate-silver nanowire hybrid inks to fabricate silver conductive lines. Journal of Materials Chemistry, 2012, 22(31): 15599-15605.
[28]Henley S J, Cann M, Jurewicz I, et al. Laser patterning of transparent conductive metal nanowire coatings: simulation and experiment. Nanoscale, 2014, 6(2): 946-952.
[29]Spechler J A, Arnold C B. Direct-write pulsed laser processed silver nanowire networks for transparent conducting electrodes. Applied Physics A, 2012, 108(1): 25-28.
[30]Garnett E C, CAI Wen-shan, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions. Nature materials, 2012, 11(3): 241-249.
[31]GUO Chuan-fei, CHEN Yan, TANG Lu, et al. Enhancing the scratch resistance by introducing chemical bonding in highly stretchable and transparent electrodes. Nano letters, 2015, 16(1): 594-600.
[32]Song C H, Han C J, Ju B K, et al. Photoenhanced patterning of metal nanowire networks for fabrication of ultraflexible transparent devices. ACS applied materials & interfaces, 2016, 8(1): 480-489.
[33]Idier J, Neri W, Labrugère C, et al. Modified silver nanowire transparent electrodes with exceptional stability against oxidation. Nanotechnology, 2016, 27(10): 105705.
[34]De S, Higgins T M, Lyons P E, et al. Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano, 2009, 3(7): 1767-1774.
[35]Jang H, Kim D, Tak H. Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Agnanowires on flexible substrate. Current Applied Physics, 2016, 16(1): 24-30.
[36]Kim Y, Lee D H, Kim D H, et al. Flexible and transparent electrode based on silver nanowires and a urethane acrylate incorporating Diels-Alder adducts. Materials & Design, 2015, 88: 1158-1163.
[37]TANG Jun, GUO Hao, ZHAO Miao-miao, et al. Highly stretchable electrodes on wrinkled poly-dimethylsiloxane substrates. Scientific Reports, 2015, 5: 16527.
[38]LIU Wen-wen, LU Cong-xiang, LI Hong-ling, et al. Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. Journal of Materials Chemistry A, 2016, 4(10): 3754-3764.
[39]Ahn B Y, Duoss E B, Motala M J, et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 2009, 323(5921): 1590-1593.
[40]Schilinsky P, Waldauf C, Brabec C J. Performance analysis of printed bulk heterojunction solar cells. Adv. Funct. Mater, 2006, 16: 1669-1672.
[41]Xiang H Y, Li Y Q, Zhou L, et al. Outcoupling-enhanced flexible organic light-emitting diodes on ameliorated plastic substrate with built-in indium tin-oxide-free transparent electrode, ACS Nano, 2015, 9(7):7553-7562.
[42]Schilinsky P, Waldauf C, Brabec C J. Performance analysis of printed bulk heterojunction solar cells. Advanced Functional Materials, 2006, 16(13): 1669-1672.
[43]Green R, Morfa A, Ferguson A J, et al. Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition. Applied Physics Letters, 2008, 92(3): 033301.
[44]Aernouts T, Vanlaeke P, Geens W, et al. Printable anodes for flexible organic solar cell modules. Thin solid films, 2004, 451: 22-25.
[45]Hau S K, Yip H L, Leong K, et al. Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells. Organic Electronics, 2009, 10(4): 719-723.
[46]Kim S J, Choi K, Choi S Y. Study on the fabrication of transparent electrodes by using a thermal-roll imprinted Ag mesh and anATO thin film. Journal of the Korean Physical Society, 2016, 68(6): 779-785.
[47]Voronin A S, Ivanchenko F S, Simunin M M, et al. High performance hybrid rGO/Ag quasi-periodic mesh transparent electrodes for flexible electrochromic devices. Applied Surface Science, 2016, 364: 931-937.
[48]Thota R, Ganesh V. Selective and sensitive electrochemical detection of methyl parathionusing chemically modified overhead projector sheets as flexible electrodes. Sensors and Actuators B, 2016 227: 169-177.
[49]Hsel M, Angmo D, Sndergaard R R, Dos Reis Benatto G A, et al. High-volume processed, ITO-free superstrates and substrates for roll-to-roll development of organic electronics. Advanced Science, 2014, 1(1): 1400002.
[50]Madaria A R, Kumar A, Zhou C. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 2011, 22(24): 245201.
[51]Hu L, Hecht D S, Grüner G. A method of fabricating highly transparent and conductive interpenetrated carbon nanotube-parylene networks. Nanotechnology, 2009, 20(46): 465304.
[52]Kim B J, Park J S, Hwang Y J, et al. Characteristics of silver meshes coated with carbon nanotubes via spray-coating and electrophoretic deposition for touch screen panels. Thin Solid Films, 2015, 596: 68-71.
[53]Yusoff A, Mohd R, Lee S J, et al. High performance semitransparent tandem solar cell of 8.02% conversion efficiency with solution-processed graphene mesh and laminated Ag nanowire top electrodes. Advanced Energy Materials, 2014, 4(12): 1301989.
[54]Seo K W, Lee J H, Kim H J, et al. Highly transparent and flexible InTiO/Ag nanowire/InTiO films for flexible organic solar cells. Applied Physics Letters, 2014, 105(3): 031911.
[55]Berchmans S, Bandodkar A J, Jia W, et al. An epidermal alkaline rechargeable Ag-Zn printable tattoo battery for wearable electronics. Journal of Materials Chemistry A, 2014, 2(38): 15788-15795.
[56]Kim B S, Shin K Y, Pyo J B, et al. Reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire networks. ACS applied materials & interfaces, 2016, 8(4): 2582-2590.
[57]Cheong H G, Triambulo R E, Lee G H, et al. Silver nanowire network transparent electrodes with highly enhanced flexibility by welding for application in flexible organic light-emitting diodes. ACS applied materials & interfaces, 2014, 6(10): 7846-7855.
[58]LIU Shi-hao, LIU Wen-bo, YU Jing, et al. Silver/germanium/silver: an effective transparent electrode for flexible organic light-emitting devices. Journal of Materials Chemistry C, 2014, 2(5): 835-840.
[59]Mayousse C, Celle C, Moreau E, et al. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology, 2013, 24(21): 215501.
[60]Kim Y, Song C H, Kwak M G, et al. Flexible touch sensor with finely patterned Ag nanowires buried at the surface of a colorless polyimide film. RSC Advances, 2015, 5(53): 42500-42505.
[61]Park S H, Lee S J, Lee J H, et al. Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Organic Electronics, 2016, 30: 112-121.
[62]Jung K H, Yun S J, Lee S H, et al. Double-layered Ag-Al back reflector on stainless steel substrate for a-Si: H thin film solar cells. Solar Energy Materials and Solar Cells, 2016, 145: 368-374.
[63]Hammock M L, Chortos A, Tee B C K, et al. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25(42): 5997-6038.
[64]Benight S J, Wang C, Tok J B H, et al. Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science, 2013, 38(12): 1961-1977.
[65]ZHAO Xiao-li, HUA Qi-lin, YU Ruo-meng, et al. Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Advanced Electronic Materials, 2015, 1(7): 1500142.
[66]WEI Yong, CHEN Song, LIN Yong, et al. Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure. Journal of Materials Chemistry C, 2015, 3(37): 9594-9602.
[67]LIU Shun-wei, Su T H, Chang P C, et al. ITO-free, efficient, and inverted phosphorescent organic light-emitting diodes using a WO3/Ag/WO3 multilayer electrode. Organic Electronics, 2016, 31: 240-246.
[68]Morales M M, Dauzou F, Jeangros Q, et al. An indium free anode for large-area flexible OLEDs: defect-free transparent conductive Zinc Tin Oxide. Advanced Functional Materials, 2016, 26(3): 384-392.
[69]Lee J, Koh T W, Cho H, et al. Color temperature tuning of white organic light-emitting diodes via spatial control of micro-cavity effects based on thin metal strips. Organic Electronics, 2015, 26: 334-339.
[70]Im J H, Kang K T, Lee S H, et al. Bulk-like Al/Ag bilayer film due to suppression of surface Plasmon resonance for high transparent organic light emitting diodes. Organic Electronics, 2016, 33: 116-120.
[71]Khadir S, Chakaroun M, Belkhir A, et al. Localized surface Plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters. Optics express, 2015, 23(18): 23647-23659.
[72]HE Wei-wei, YE Chang-hui. Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review. Journal of Materials Science & Technology, 2015, 31(6): 581-588.
基于Ag纳米线和纳米颗粒的柔性电极设计与应用的近期研究进展
刘文耀, 赵苗苗, 郭旭东, 唐军
(中北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 030051)
摘要:电子领域的快速发展对固态器件的物理柔韧性提出了更高的要求。这一技术使现代电子器件具有显著的优势, 尤其是对于金属纳米线和纳米颗粒而言, 其低电阻和高的机械稳定性被广泛地用于电极的制备。 Ag纳米材料因其高本征电导率,可制作透明薄层并保持低电阻以及成本相对廉价而受到越来越多的关注。 基于Ag纳米材料的柔性电极, 因为拥有优于其他金属的优异性能也被广泛应用。 因此, 我们总结了基于Ag纳米材料的柔性电极的近期研究进展。另外, 对其典型的设计制备方法以及广阔的应用前景也进行了一定探讨。
关键词:柔性电极; 银纳米线; 银纳米颗粒; 固态器件
引用格式: LIU Wen-yao, ZHAO Miao-miao, GUO Xu-dong, et al. Recent design and applications of flexible electrodes based on Ag nanowires and nanoparticles: a review. Journal of Measurement Science and Instrumentation, 2016, 7(4): 307-316. [doi: 10.3969/j.issn.1674-8042.2016-04-001]