ZHOU Kun-li1,2, QU Ji-feng2, ZHOU Zhen-yu2
(1. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; 2. National Institute of Metrology, Beijing 100029, China)
Abstract: Nonlinear distortion introduced by an amplifier when subjected to a multisine excitation decreases the measurement accuracy in many metrological and measurement areas. In this paper, we performed qualitative and quantitative analyses of the nonlinear distortion with the multisine excitations constrained by a constant power spectral density. We present the numerical results with respect to different tone spacings, nonlinear orders, harmonic phases and tone distributions. Moreover, three aspects of contributions are made to further reveal the distortion mechanism. First, we find that the type Ⅱ components for Schroeder-phase multisines distribute uniformly but not all in anti-phase to the type Ⅰ components for the second order nonlinearity. Second, we simulate the variance of the type Ⅰ and Ⅱ components and their summation to explain the principle of reducing the type Ⅱ distortion by averaging the results obtained using multiple realizations of random-phase multisines. Third, we observe a special distortion distribution mechanism for the Schroeder-phase multisine excitation. The results contribute to a better estimation and understanding of the nonlinear distortion.
Key words: multisine excitation; nonlinear distortion; power spectral density; type Ⅰ and Ⅱ contributions
CLD number: TN830.6Document code: A
Article ID: 1674-8042(2016)04-0350-08 doi: 10.3969/j.issn.1674-8042-2016-04-007
References
[1]Toonen R C, Benz S P. Nonlinear behavior of electronic components characterized with precision multitones from a Josephson arbitrary waveform synthesizer. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 715-718.
[2]Sanchez B, Vandersteen G, Bragos R, et al. Optimal multisine excitation design for broadband electrical impedance spectroscopy. Measurement Science and Technology, 2011, 22(11): 115601.
[3]Yamazawa K, Urano C, Yamada T, et al. Boltzmann constant measurements using QVNS-based Johnson noise thermometry at NMIJ, AIST. International Journal of Thermophysics, 2014, 35(6): 985-998.
[4]White D R. Non-linearity in Johnson noise thermometry. Metrologia, 2012, 49(6): 651-665.
[5]Evans C, Rees D, Jones L. Nonlinear Disturbance errors in system identification using multisine test signals. IEEE Transactions on Instrumentation and Measurement, 1994, 43(2): 238-244.
[6]Evans C, Rees D. Nonlinear distortions and multisine signals—part I: measuring the best linear approximation. IEEE Transactions on Instrumentation and Measurement, 2000, 49(3): 602-608.
[7]Evans C, Rees D. Nonlinear distortions and multisine signals—part II: minimizing the distortion. IEEE Transactions on Instrumentation and Measurement, 2000, 49(3): 610-616.
[8]Solomou M, Rees D, Chiras N. Frequency domain analysis of nonlinear systems driven by multiharmonic signals. IEEE Transactions on Instrumentation and Measurement, 2004, 53(2): 243-250.
[9]Solomou M, Rees D. Frequency domain analysis of nonlinear distortions on linear frequency response function measurements. IEEE Transactions on Instrumentation and Measurement, 2005, 54(3): 1313-1320.
[10]Schoukens J, Pintelon R. Study of the variance of parametric estimates of the best linear approximation of nonlinear systems. IEEE Transactions on Instrumentation and Measurement, 2010, 59(12): 3159-3167.
[11]Pintelon R, Schoukens J. FRF measurement of nonlinear systems operating in closed loop. IEEE Transactions on Instrumentation and Measurement, 2013, 62(5): 1334-1345.
[12]QU Ji-feng, Benz S P, Pollarolo A, et al. Improved electronic measurement of the Boltzmann constant by Johnson noise thermometry. Metrologia, 2015, 52(5): s242-s256.
[13]Kundert K. Accurate and rapid measurement of IP2 and IP3. 2009: 1-13.
[14]ZHOU Kun-li, QU Ji-feng, DONG Xian-ying. Low crest factor multitone waveform synthesis with the ac Josephson voltage standard. I2MTC, 2015: 556-559.
[15]Schroeder M R. Synthesis of low-peak-factor signals and binary sequences with low autocorrelation. IEEE Transactions on Information Theory, 1970, 16(1): 85-89.
[16]Pedro J C, Carvalho N B. Intermodulation distortion in microwave and wireless circuits. USA:Artech House, 2003.
[17]Hosseini S M, Johansen T A, Fatehi A. Comparison of nonlinearity measures based on time series analysis for nonlinearity detection. Modeling, Identification and Control, 2011, 32(4): 123-140.
[18]Gharaibeh K M. Nonlinear distortion in wireless systems: modeling and simulation with MATLAB. Wiley, 2012.
功率谱密度约束下多频激励的非线性失真研究
周琨荔1,2, 屈继峰2, 周贞宇2
(1. 清华大学 电机工程与应用电子技术系, 北京 100084;2. 中国计量科学研究院, 北京 100029)
摘要:多频激励信号通过放大器后产生的非线性失真对测量准确性具有较大影响。 本文对功率谱密度约束下的多频激励信号产生的非线性失真进行了定量和定性的研究,给出了不同谱线间隔、非线性阶数、谐波相位和频率分布下的数值计算结果, 并从三个方面进一步阐释了非线性失真的作用机制。 首先, 通过仿真发现, 二阶非线性时, 由具有Schroeder相位的多频激励信号产生的二类失真分量的相位为随机分布,而不是和一类失真分量反相。 其次, 通过计算一类失真分量、二类失真分量以及总失真的变化, 解释了通过对多个具有随机相位的多频激励信号产生的非线性失真求平均来减小二类失真分量影响的测量方法。最后, 发现了具有Schroeder相位的多频激励信号所产生非线性失真的特殊分布机制。 本文的研究对准确评估和深入理解非线性失真具有重要意义。
关键词:多频激励; 非线性失真; 功率谱密度; 一类和二类分量
引用格式:ZHOU Kun-li, QU Ji-feng, ZHOU Zhen-yu. Nonlinear distortion analysis for multisine excitation constrained by power spectral density. Journal of Measurement Science and Instrumentation, 2016, 7(4): 350-357. [doi: 10.3969/j.issn.1674-8042.2016-04-007]