WEI Jiao-tong, HAN Yan, CHEN Ping
(Shanxi Key Laboratory of Signal Capturing & Processing, North University of China, Taiyuan 030051, China)
Abstract: A key step is to extract valid information region in the fusion of multi-voltage X-ray image sequence for complicated components. To improve the self-adaption of extraction, a method is presented in this paper. In this paper, the valid information region is selected by the grey level interval, which is computed by the optimization of image quality evaluation model. The model is based on the histogram equalization and the grey level interval. Then, every valid region of images at different voltages is extracted and they are fused according their grey level transformation function. The fusion image contains completed structure information of the component. The fusion experiment of a cylinder head shows the effectiveness of the presented method.
Key words: multi-voltage; X-ray image; fusion; valid region
CLD number: TM41Document code: A
Article ID: 1674-8042(2016)04-0358-05 doi: 10.3969/j.issn.1674-8042-2016-04-008
References
[1]DUAN Yan-jie, YANG Ming, LIU Bin, et al. X-Ray image enhancement technology based on variable dose. Nondestructive Testing, 2011, 33(2): 13-15.
[2]CHEN Ping, HAN Yan, PAN Jin-xiao. Multi-voltage image stack reconstruction in X-ray digital imaging. Optik-International Journal for Light and Electron Optics, 2013, 124(18): 3265-3268.
[3]Krmer P, Weckenmann A. Multi-energy image stack fusion in computed tomography. Measurement Science and Technology, 2010, 21(4): 45105-45111.
[4]YANG Ying, MOU Xuan-qin, LUO Tao, et al. Reconstruction of x-ray image with super dynamic range by wavelet transform. Acta Photonica Sinica, 2009, 38(9): 2435-2438.
[5]QI Yan-jie, WANG Li-ming, FU Zhao-xia. A new fusion method for variable-voltage dr image. Journal of Computer Information System, 2013, 9(12): 1483-1490.
[6]WEI Jiao-tong, CHEN Ping, PAN Jin-xiao. Gradient-energy digital radiography image fusion based on principle component analysis. Chinese Journal of Stereology & Image Analysis, 2013, 18(2): 103-108.
[7]WEI Jiao-tong, CHEN Ping, PAN Jin-xiao. Multi-voltage digital radiography images fusion based on gray consistency. Nondestructive Evaluation/testing: New Technology & Application, 2013: 209-211.
[8]QI Yan-jie, WANG Li-ming. Multi-voltage digital radiography images fusion based on well-exposedness. Optik-International Journal for Light and Electron Optics, 2015, 126(19): 1889-1893.
[9]ZHAO Xia, LIU Bin. Study on calculation method of the weighted coefficient in x-ray imaging based on variable energy. Acta Optica Sinica, 2015, 35(7): 133-139.
[10]YIN Xiao-gang, PAN Jin-xiao, CHEN Ping. Research on X-ray Imaging physical characteristics based on variable energy. Nuclear Electronics & Detection Technology, 2014, (6): 770-774.
[11]ZHU You-lian, CHENG Huang. An adaptive histogram equalization algorithm on the image gray level mapping . Physics Procedia, 2012, 25(22): 601-608.
[12]CAI Lan, CHEN Zhen, MEI Lin. Application of image enhancement technique in X radiographic testing. Nondestructive Testing, 2005, 27(5): 256-258.
[13]Chen S D. A new image quality measure for assessment of histogram equalization-based contrast enhancement techniques. Digital Signal Processing, 2012, 22(4): 640-647.
[14]WEI Jiao-tong. The Research of multi-energy x-ray image stack fusion algorithm. Taiyuan: North University of China, 2014.
[15]CHEN Ping, HAN Yan, PAN Jin-xiao. High-dynamic-range CT reconstruction based on varying tube-voltage imaging. Plos One, 2015, 10(11): 0141789.
基于有效区域选取的变电压X-射线图像融合
魏交统, 韩焱, 陈平
(中北大学 信息探测与处理山西省重点实验室, 山西 太原 030051)
摘要: 针对变电压X-射线图像序列融合有效区域的提取问题, 本文提出了一种依据图像质量来判断有效区域灰度区间的方法,提高了提取的自适应性。 首先, 考虑图像直方图均衡性和灰度区间宽度, 建立图像质量评价模型。 然后求解模型, 并依据所得灰度区间提取有效区域。 最后, 利用灰度变换函数融合各有效区域,获取被检测对象完整结构信息的图像。 本文以缸盖为实验对象, 验证了该方法的有效性。
关键词: 变电压; X-射线图像; 融合; 有效区域
引用格式:WEI Jiao-tong, HAN Yan, CHEN Ping. Multi-voltage X-ray image sequence fusion based on selection of valid region. Journal of Measurement Science and Instrumentation, 2016, 7(4): 358-362. [doi: 10.3969/j.issn.1674-8042.2016-04-008]
l