此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Minimum variance adaptive beamforming combined with coherence factor weighting applied to ultrafast active cavitation imaging


DING Ting1,2, HU Hong3, YANG Lu1,2, GUI Zhi-guo1,2

 

(1. Key Laboratory of Instrumentation Science & Daynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051, China; 2. Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China;3. Department of Biomedical Engineering, School of Life Science and Technology,  Xi’an Jiaotong University, Xi’an 710049, China)

 

Abstract: The ultrafast active cavitation imaging (UACI) based on plane wave transmission and delay-and-sum (DAS) beamforming has been developed to monitor cavitation events with a high frame rate. However, DAS beamforming leads to images with limited resolution and contrast. In this paper, minimum variance (MV) adaptive beamforming and coherence factor (CF) weighting are combined to achieve an MVCF-based UACI, which can improve the cavitation imaging quality. The detailed algorithm evaluation has been investigated from both simulation and experimental data. The simulation data include 10 point targets and a cyst, while the experimental data are obtained by detecting the dissipation of cavitation bubbles in water excited by a single element transducer with frequency of 1.2 MHz. The advantages of the proposed methodology as well as the comparison with conventional B-mode, DAS, MV, DAS-CF and MV on the basis of compressive sensing (CS) (called MVCS) beamformers are discussed. The results show that MVCF beamformer has a significant improvement in terms of both resolutions and signal-to-noise ratio (SNR).The MVCF-based UACI has a SNR at 21.82 dB higher, lateral and axial resolution at 2.69 times and 1.93 times, respectively, which were compared with those of B-mode active cavitation mapping. The MVCF-based UACI can be used to image the residual cavitation bubbles with a higher SNR and better spatial resolution.

 

Key words: ultrafast active cavitation imaging (UACI); cavitation event; adaptive beamforming; coherence factor weighting

 

CLD number: TN911.73Document code: A

 

Article ID: 1674-8042(2017)01-0068-10  doi: 10.3969/j.issn.1674-8042-2017-01-011

 

References

 

[1]ZHEN Xu, Raghavan M, Hall T, et al. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy-histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,  2008, 55(5): 1122-1132.
[2]ZHANG Xi, Owens G E, Gurm H S, et al. Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold(microtripsy). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62(7): 1342-1355.
[3]LI Tong, Khokhlova T, Sapozhnikov O, et al. A new active cavitation mapping technique for pulsed HIFU applications-bubble doppler. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(10): 1698-1708.
[4]ZHEN Xu, Hall T L, Fowlkes J B, et al. Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion(histotripsy). The Journal of the Acoustical Society of America, 2007, 122(1): 229-236.
[5]HU Hong, XU Shan-shan, YUAN Yuan, et al. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy. The Journal of the Acoustical Society of America, 2015, 137(5): 2563-2572.
[6]Leighton T G. 2-cavitation inception and fluid dynamics. ∥Leighton T G. The acoustic bubble. Academic Press, USA, 1994: 67-128.
[7]Rabkin B A, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation. Ultrasound in Medicine & Biology, 2005, 31(7): 947-956.
[8]DING Ting, YIN Hui, HU Hong, et al. Cavitation Mapping. ∥WAN Ming-xi, FENG Yi, Haar G T. Cavitation in Biomedicine, Springer, 2015: 47-114.
[9]Gateau J, Aubry J F, Pernot M, et al. Combined passive detection and ultrafast active imaging of cavitation events induced by short pulses of high-intensity ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(3): 517-532.
[10]Denarie B, Tangen T A, Ekroll I K, et al. Coherent plane wave compounding for very high frame rate ultrasonography of rapidly moving targets. IEEE Transactions on Medical Imaging, 2013, 32(7): 1265-1276.
[11]Montaldo G, Tanter M, Bercoff J, et al. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(3): 489-506.
[12]Holfort I K, Gran F, Jensen J A. Plane wave medical ultrasound imaging using adaptive beamforming.In: Proceedings of IEEE, 2008: 288-292.
[13]Capon J. High-resolution frequency-wavenumber spectrum analysis. In: Proceedings of IEEE, 1969, 57(8): 1408-1418.
[14]Synnevag J, Austeng A, Holm S. Adaptive beamforming applied to medical ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(8): 1606.
[15]Asl B M, Mahloojifar A. Contrast enhancement and robustness improvement of adaptive ultrasound imaging using forward-backward minimum variance beamforming. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(4): 858-867.
[16]WANG Zhi-song, LI Jian, WU Ren-biao. Time-delay-and time-reversal-based robust capon beamformers for ultrasound imaging. IEEE Transactions on Medical Imaging, 2005, 24(10): 1308-1322.
[17]ZHANG Qiong, LI Bin, SHEN Min-fen. A measurement-domain adaptive beamforming approach for ultrasound instrument based on distributed compressed sensing: initial development. Ultrasonics, 2013, 53(1): 255-264.
[18]BAI Chen, XU Shan-shan, JING Bo-wen, et al. Compressive adaptive beamforming in 2D and 3D ultrafast active cavitation imaging. In: Proceedings of 2015 IEEE International Ultrasonics Symposium, 2015: 1-4.
[19]LI Pai-chi, LI Meng-lin.Adaptive imaging using the generalized coherence factor. IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50(2): 128-141.
[20]Asl B M, Mahloojifar A. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging. IEEE transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56(9): 1923-1931.
[21]XU Meng-ling, YANG Xin, DING Ming-yue, et al. Spatio-temporally smoothed coherence factor for ultrasound imaging(Correspondence). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61(1): 182-190.
[22]DING Ting, HU Hong, BAI Chen, et al. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow. Ultrasonics, 2016, 69: 166.
[23]Cox H, Zeskind R M, Owen M M. Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987, 35(10): 1365-1376.
[24]Synnevg J F, Austeng A, Holm S. Adaptive beamforming applied to medical ultrasound imaging.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(8): 1606-1613.
[25]Hollman K, Rigby K, O’Donnell M. Coherence factor of speckle from a multi-row probe. In: Proceedings of IEEE Ultrasonics Symposium, 1999: 1257-1260.
[26]Abeyratne U R, Petropulu A P, Reid J M. Higher order spectra based deconvolution of ultrasound images. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(6): 1064-1075.

 


融合最小方差自适应和相干系数波束合成的

 


超快速主动空化成像方法丁婷1,2, 胡虹3, 杨录1,2, 桂志国1,2

 

(1. 中北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 030051; 2.  中北大学 电子测试技术重点实验室,  山西 太原 030051; 3. 西安交通大学 生物医学工程教育部重点实验室, 陕西 西安  710049)

 

摘要:基于平面波发射和延迟叠加(DAS)波束合成的超高速主动空化成像能够以高帧频监测超声空化活动, 但其图像分辨率和对比度较低。 本文提出一种结合最小方差自适应算法(MV)和相干系数算法(CF)实现基于MVCF波束合成的超高速主动空化成像, 以此提高空化图像质量。 通过Field II仿真和实验数据全面详细验证本方法的有效性与优点, 仿真数据包括点目标和囊肿仿体, 实验数据是对1.2 MHz单聚焦超声换能器产生的空化泡采集原始射频数据。 文中将MVCF波束合成算法与传统B超图像、 DAS、 MV、 DAS-CF和MVCS波束合成算法进行比较。 结果表明, 基于MVCF波束合成的超高速主动空化成像可显著提高空化图像的信噪比和分辨率。 与传统B超图像相比, 基于MVCF波束合成的超高速主动空化成像图像信噪比高21.82 dB, 且横向和轴向空间分辨率分别是传统B超图像的2.69倍和1.93倍。 基于MVCF波束合成的超高速主动空化成像能够以较高的信噪比和分辨率监测超声空化活动。

 

关键词:超快速主动空化成像; 空化活动; 自适应波束合成; 相干系数算法

 

引用格式:DING Ting, HU Hong, YANG Lu, et al. Minimum variance adaptive beamforming combined with coherence factor weighting applied to ultrafast active cavitation imaging. Journal of Measurement Science and Instrumentation, 2017, 8(1): 68-77. [doi: 10.3969/j.issn.1674-8042.2017-01-011]

 

[full text view]