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Glide landmark detection using band-limited energy ratio contours
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Abstract: A detection system for American English glides /w y r 1/ in a knowledge-based automatic speech recognition system
is presented. The method uses detection of dips in band-limited energy to total energy ratios, instead of detecting dips along
the unmodified band-limited energy contours. By using band-limited energy ratio, the dip detection is applicable in not only
intervocalic regions but also in non-intervocalic regions. A Gaussian mixture model(GMM) based classifier is then used to
separate the detected vowels and nasals. This approach is tested using the TIMIT corpus and results in an overall detection
rate of 69.5% , which is a 4.7% absolute increase in detection rate compared with an hidden Markov model (HMM) based

phone recognizer.
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Current automatic speech recognition (ASR) sys-
tems typically use statistical approaches, i.e. hidden
Markov models (HMMs) to capture patterns in the
speech signals. These models usually assume that the
speech frames are independent so that each frame
can be analyzed. However, phonetic information of
a speech signal is not uniformly distributed across
the whole utterance. Instead, valuable information
is found in the vicinity of abrupt spectral discontinu-
ities or transitions. Thus, listeners need not only lis-
ten to each of the time segment of a speech carefully
but also focus on the instances where more informa-
tion is located. Various perceptual experiments sup-
port the hypothesis that human speech recognition is
based on the regions of abrupt change'™ .

The accumulation of knowledge from linguistics
has led to investigations of direct modeling of lin-
guistic knowledge. For example, Stevens*' outlined
a distinctive feature-based speech recognition system
that extracted linguistic descriptions of speech
sounds from the signal. In this approach, landma-
rks™' are first extracted, which are locations in the
signals that indicate articulatory configurations or
movements involved in the production of broad
classes of speech sounds. Distinctive features, which
are linguistic descriptions of speech sounds® , are
then extracted from around the landmarks. The
landmark-based ASR system has several advantages
over statistical approaches. Since detailed analysis is
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carried out only in specific regions designated by the
landmarks, the system is supposed to be more effi-
cient. Besides that, different resolutions according
to the landmarks are applicable. For example, a
short temporal window can be applied for a tran-
sient burst of a stop consonant while a longer one
for a vowel.

Among the landmarks, detection of glides, espe-
cially non-intervocalic glides, is the most difficult
task. Glide detection has been investigated by Espy-
Wilson™, in which glides in a carrier phrase
“(word) _ pa” are used for training, and dip/peak
detection™’ along band energy and formant frequen-
cy contours is used for classification. Classification
rates are around 79% , when tested on continuous
sentences for 15 speakers. Sun"’ detected prevocal-
ic /w/ and /y/ using signal amplitude and first for-
mant energy, resulting in a detection rate of 93.
3%, with 6.6% false alarm for isolated intervocalic
segments from 3 speakers, and 88.0%, and 9.4%,
for continuous sentence utterances from 5 speakers,
respectively. However, the methods described in
these studies are not directly applicable to general
distinctive feature-based systems, and evaluation is
carried out on utterances from a limited number of
speakers.

This paper investigates an improved method for
detection of the glides /w y r 1/ for a knowledge-
based speech recognition system. Especially, this
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study improves upon Espy-Wilson’s method by pro-
posing dip detection along band-limited energy to
total energy contour ratio, to improve detection of
non-intervocalic glides.

1 Methods

1.1 Database

The TIMIT database'"" contains 16 kHz sampled
recordings of 630 speakers, each reading ten sen-
tences in a noise-free environment. Time-aligned
orthographic, phonetic and word transcriptions for
each utterance are provided. According to the so-
nority hierarchy'®’, glides appear next to vowels.
Therefore, locations of vowels may be used as an-
chors to detect glides.

In this study, we assume vowel landmarks have
been found in advance, and our goal is to detect
glides in all sonorant regions that abut vowel land-
marks. This assumption is plausible since vowel
landmarks can be detected with high accuracy .
Although it is expected that there will be errors in
detecting such landmarks in a practical system, in
order to evaluate glide detection performance in the
absence of endpoint detection errors, phone labels
provided in TIMIT are used as references in this
study. That is, all sonorant regions, including all
vowels, semivowels, liquid and nasals, are first
identified by using TIMIT phone labels.

First, it is confirmed whether glides appear adja-
cent to vowels in the database. Examination of the
TRAIN set portion of the TIMIT corpus showed
3 /wls, 19 [1/s, and 6 [l/s which are not adjacent to
vowels. However, a closer look shows these are fol-
lowed by the syllabic nasals /em/ or /en/, which may
constitute syllabic nuclei, and may be considered vo-
calic segments. A similar distribution is observed for
the TEST portion as well. To simplify modeling,
these cases are treated as exceptions and are not in-
cluded in this study.

The remaining sonorant regions may be catego-
rized into three different groups according to the
position relative to vowels: intervocalic, prevocalic
and postvocalic. Each region may contain one or
more glides,or none(e. g. intervocalic nasals or two
concatenated vowels). Counts of sonorants within
each type of region TIMIT are given in Table 1.

Table 1 Counts of glides within intervocalic, prevocalic and
postvocalic sonorant regions for training and test sets of the
TIMIT database. Glides are denoted w, y, r and |

intervocalic

prevocalic postvocalic

Wy r 1 Wy r l \wy r 1
Train|l 405 874 2 1342 8021 739 841 285319101 0 1 5331 083
Test | 591 320 890 1105|646 313 1040 763 |0 0 593 483

The proposed glide detection system consists of
two steps: dip detection along band-limited energy
contours and separating out vowels and nasals using
classifiers. Each step is described below.

1.2 Dip detection

English semivowels /w y r 1/ have low first for-
mant (F,) due to oral cavity narrowing. The de-
crease in F, involves a reduction in the spectral am-
plitude not only in the amplitude of F, peak in the
spectrum but also in those of the higher-frequency
spectral peaks'*'. This phenomenon can be ob-
served as a dip in low to mid-frequency band limited
energy has been used to detect glides. Band frequen-
cies are selected as 640 —2 800 Hz (E,) and 2 000 —
3000 Hz (E,)"™ . The E, band is chosen to include
the second and the third formants (F, and F;),
which have weaker amplitudes compared with its
adjacency to vowels in the case of glides. The E,
band is chosen to aid the detection of /r/, which
does not form notable dips in the 640 —2 800 Hz fre-
quency range. The band energies are calculated with
a 25-ms window at 10-ms intervals.
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Fig.1 An example of energy dip formed in the pronuncia-
tion of “wide” following an epenthetic silence. E,, E, and
E . refer to band-limited energies in dB in 640 —2 800 Hz,
2 000 -3 000 Hz and the total band, respectively

For intervocalic regions, dip detection in band
energy is highly reliable since neighboring vowels
form energy peaks. For prevocalic and postvocalic
regions, glides are often placed adjacent to silence
or stop closures and are hidden in the overall energy
reduction. Therefore, using Espy-Wilson’ s defini-
tion of dip depth as energy difference between the
minimum energy in consonants and that of an adja-
cent vowel becomes less effective. Thus, in this pa-
per, we propose subtracting the total log-energy of a
given frame from the band limited log-energy to
compensate for the reduction in the total energy.
That is, band-limited energy to total energy ratio is
used instead of the band-limited energy itself.
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Fig. 1 shows a sample from the TIMIT data set.
The word “wide” is pronounced following an epen-
thetic silence. Energy dips at /w/ are not observed in
the E, and E, contours but are presented in the E, -
E. and E,-E contours.

1.3 Separation of vowels and nasals

Once candidate locations for glides are found us-
ing dip information, the locations are examined for
the presence of glides and vowels and nasals are sep-
arated out. The dip depth information and band-
limited energies are used as features. 0 — 900 Hz
band (E,) is included as a low frequency band since
vowels are expected to form peaks in the low fre-
quency band .

Along with band energies, the additional mea-
surements related to the vocal tract are included.
Widely used measurements such as the first three
formant frequencies (f,, f, and f;), amplitudes
(A,,A, and A;) and bandwidths (B,, B, and B;)
are found. Although vocal tract measurements have
been mostly used in speech recognition, the glottal
source has substantial interactions with the vocal
tract™'. Therefore, the features related to voice
source information such as open quotient, spectral
tilt, harmonic amplitudes and harmonics-to-noise
ratios are found. Open quotient refers to the ratio
of the interval in which the vocal folds are open to
the total pitch period, and spectral tilt is defined as
the slope of a least squares linear fit to the log pow-
er spectrum. Hanson"*’ suggested that open quotient
could be estimated by calculating H,-H,, and spec-
tral tilt by calculating H,-A;. In this study, the
measures H, -H, and H, -H, are found for open
quotient, and spectral tilt measures include H, -A/ ,
H/-A; and H| -A; . Asterisks indicated that spec-

tral magnitudes had been corrected for formant
effects'”””.  Finally, harmonics-to-noise ratios
(HNRs) from 4 frequency bands are chosen. They
are; 0—500 Hz, 0—1 500 Hz, 0—2 500 Hz and 0 —
3 500 Hz.

All formant frequency, amplitude and bandwidth
values, as well as voice source features, are nor-
malized by their means and standard deviations for
each utterance. In this study, values for fundamen-
tal frequency, formant frequencies, amplitudes and
bandwidths are extracted using the VoiceSauce tool-
kit"®" with frame length 25 ms and step size 10 ms.
The features are then culled from an ANOVA test to
select significant measurements with p<10 °.

Using these measurements, Gaussian mixture
models (GMMs) are used for classification. Eight
mixtures are sufficient to model distributions. Al-
though GMMs may be used directly for multi-class
classification, in this study, they are used in tree-
based cascading two-class classifiers, in order to al-
leviate the data imbalance problem. The first step
separates vowels from glides, and the second sepa-
rates nasals from glides.

2 Experimental results

2.1 System performance

In this paper, glide landmark detection perfor-
mance is evaluated with a 10-ms tolerance from the
reference TIMIT phone labels. As expected, glides
in intervocalic regions are the most reliably detect-
ed, with a detection rate of 71. 0% . Prevocalic
glides show similar performance of 69. 6% , while
postvocalic glides show the lowest rates of 65.2%.
Overall system performance is summarized in the
following Table 2.

Table 2 Glide detection results. The last three columns indicate classification results, with rates in parentheses. Insertion denotes

occurrences of two or more detections within a single glide

No. tokens Detected Glide Vowel Nasal
Intervocalic
Glide 2 906 2 694(92.7% ) 2 063(76.6% ) 407(15.1%) 224(8.3% )
Insertion 1338 508(38.0% ) 573(42.8%) 257(19.2%)
Vowel 5452 1272(23.3%) 4 .034(74.0% ) 146(2.7% )
Nasal 1910 2269 338(14.9% ) 540(23.8% ) 1391(61.3%)
Prevocalic
Glide 2 762 2597(94.0% ) 1.921(74.0% ) 456(17.6% ) 220(8.5%)
Insertion 566 198(35.0% ) 306(54.1%) 62(1.0%)
Vowel 10 275 1571(15.3%) 8 350(81.3% ) 354(3.4%)
Nasal 717 871 82(9.4%) 153(17.6% ) 636(73.0% )
Postvocalic
Glide 1076 830(77.1%) 701(84.5% ) 108(13.0% ) 21(2.5%)
Insertion 238 141(59.2% ) 80(33.6% ) 17(7.1%)
Vowel 8 898 1 850(20.8% ) 6721(75.5% ) 327(3.7%)
Nasal 2272 1674 88(5.3%) 1 119(66.8% ) 467(27.9% )
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To compare performance, an mel-frequency ceps-
trum coefficient(MFCC) based 3-state HMM phone
recognizer with 8-Gaussian mixture is implemented
with the HTK toolkit"®'. The overall detection rate
of 69.5% shows improvement over the HMM phone
recognizer, which yields a glide detection rate of
64.8% .

2.2 Detection errors

Since a deletion error in the dip detection step is
not recoverable, this type of error is crucial for per-
formance. The total deletion rate in the detection
step is 9.2% . More specifically, the rates is 7.3%,
6.0% and 22.9% for intervocalic prevocalic, and
postvocalic region, respectively.

For intervocalic glides, the formation of the dips
is most affected by adjacent glides or nasals.

In this case, a dip that occurs for the adjacent
segment often overshadows the dip in the glide.
This case comprises about 75% of deleted intervo-
calic glides. Especially for adjacent nasals, a dip
tends to be detected in the nasal instead of the glide
and this case comprises about 35% of all intervocalic
glide deletions. This problem s not as significant for
prevocalic and postvocalic glides, where about 4%
of glides adjacent to nasals or other glides are delet-
ed. The most significant factor causing deletion in
prevocalic glides is short of duration, which may
not allow sufficient time to form a dip during transi-
tion. For example, about 52% of deleted prevocalic
glides are shorter than 30 ms. This is not as preva-
lent for intervocalic and postvocalic glides, where
about 7% of all deletions are attributed to this ef-
fect.

For postvocalic glides, adjacent syllabic liquids /el
er axr/ show similar effects as adjacent glides and
nasals.

In this case, for about 22% of all the deleted
postvocalic glides, an energy dip tends to be placed
in the syllabic liquid, resulting in a deletion of the
glide as well as an insertion of a vowel. Also, inter-
vocalic glides in such cases showed similar tenden-
cies, contributing to about 9% of deletion errors.
More than half of deletions for postvocalic glides
(about 58% ) are from a glide preceding a stop clo-
sure. In this case, the liquids (liquids are the only
allowed glides in this case) do not form enough of a
fall in band-limited energy contour so that its energy
is similar to the preceding vowels. One possibility
for overcoming deletion errors may be to employ
additional frequency bands. It is observed that when
glides are deleted in the contexts described above,
other bands such as 1 000 —2 000 Hz and 1 500 —
2 500 Hz formed dips, which may be used in addit-
ion to those used in this study.

2.3 Classification errors

In the classification step, the balanced error rates
are 33. 7%, 26.2% and 39. 2% for intervocalic,
prevocalic and postvocalic classifiers, respectively.
The classification error rate may be reduced slightly
by selecting an optimal number of mixtures for the
GMMs. But more fundamentally, it may be neces-
sary to add features tailored to discriminating be-
tween glides/vowels and glides/nasals. Also, it is re-
vealed that syllabic liquids contribute a large portion
to vowel insertion, with about 46% , 40% and 49%
of vowel insertions in intervocalic, prevocalic and
postvocalic regions. Therefore, further measure-
ments for filtering out syllabic liquids may also be
needed.

Overall, this system has a drawback in its high in-
sertion rate. One possible strategy may be to apply a
threshold in the detection step to exclude minor
band energy fluctuation from vowels. Preliminary
results show that when thresholds are set to preserve
about 70% of glides for each contour, about 34% of
insertions are removed while retaining 97% of
glides. Secondly, posterior probabilities can be cal-
culated for each glide /w y r 1/, and observations
with no evidence related to glides can be aban-
doned. In addition, inserted glides may be also be
removed at a higher level of processing, such as in
the lexical matcher.

3 Conclusion

Glide landmark detection has been a challenging
problem, especially for non-intervocalic tokens. In
this study, we propose an improved glide landmark
detection system that detects dips along band-limited
energy to total energy ratio contours. This method
can be applied to detection of prevocalic and postvo-
calic glides as well as intervocalic glides, and the
performance shows a notable increase in detection
rate compared to an HMM phone recognizer. The
insertion rate remains relatively high, but several
strategies may be used to alleviate the problem. Fur-
ther study will include glide landmark detection in-
dependent of vowel landmark detection and combi-
nation with an HMM based speech recognition sys-
tem.
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