

Received: 2010-5-25
Corresponding author: Dian-tao Li (lidiantao2007@163.com)

Vol.1 Supplement Journal of Measurement Science and Instrumentation 2010

The study of linux's porting to S3C2410

Dian-Tao li, Yin-Jing GUO

 (Collegeof Information and electronicEngineering, Shandong University of science and technology, Qingdao 266510, China)

Abstract———— This article we mainly analyse the source
codes of the linux, we can modify the proper file that
related to the architect,wealso use the cross-compile tools

arm-linux-gcc and we eventually port to the processor.
S3C2410,this article's method is easy and it is suitable for
practical applications.

Keywords———— linux port S3C2410

Manuscript Number: 1674-8042(2010)supp.-0126-03

dio: 10.3969/j.issn1674-8042.2010.supp..35

1 Introduction

.Recently, with the development of technology, the
processor's speed is faster and faster, while the while the
power becomes slower, in one word ,the performance
becomes better and better, so the tasks that the processor
can deal is more and more complex, so wheather we can
port the OS to the processor come into our eyes. For the
reason that the linux has a open software also have a
good function , so we select it as our OS.

2 The hardware Platform

This article that we discuss the platform called
S3C2410 base on the arm9 that the Sumsang company
develop ,it apply in the electronic construction region
it also integrate some device, such as the store device
for example SDRAM,NAND flash .and network card
DM9000 also have some USB interface and Audio
Frequency interface .These devices can give us
much convenient

3 The source code of linux

3.1 The architecture of linux

 Linux's source codes organized well. Different files
that have different functions locate in the different
directories, this architecture can make the linux easy
to debug .Also this source codes can give us some
convenient when we port to the different processor.
 Now let me show some important directories.
/arch that related to the architecture[1]
/driver this directory includes many driver program.
/fs file system directory.

 3.2 This article we modify the files

 When we port the OS into the target system, we
mainly change the files that locates in the /arch .For
the reason that we adopt the high edition,
 /driver have our needed drivers and we don't
modify them.[2]

4 The core of porting

4.1 The concept of porting

 Porting refers to the codes of OS can run the
different processor ,so we can make the processor
have the function of the OS[3].

4.2 The problem of porting

 Although linux is an open source codes's OS, also
its source trees are organized well, but the embedded
system's porting have many problems such as the
storage devices and these problem need we to
consider.

4.3 The tools and kernel's requirement

4.3.1 The choice of compiler

 For the reason that the kernel that we compile the
source codes of linux can run on our platform, so we
can't use gcc which can compile the program and the
binary file can run on the PC, what we need is called
cross-compile that can compile in one processor while
run in different processor. The cross-compile that we
use is called arm-linux-gcc, and it can generate the
program that can run in arm processor[4]

4.3.2 The edition of the linux kernel

 The edition of linux kernel is higher and it have
great functions, but this will also have many problems
such as the high edition will generates more bugs, so
we will compromise it .Final, we choose 2.6.24 and it
can meet our request also it is stable.

4.3.3 The edition of the compiler

Because our kernel must be compiled by our
cross-compiler ,so the edition of the r cross-compiler
is also important, and we choose arm-linux-gcc
4.2.2[5].

VoL1 Dian-tao Li, Yin-jing Guo 127

5 The process of porting

5.1 Modify the top level of makefile

 Firstly we should modify some top level's Makefile,
we should modify like that:
ARCH=arm
CROSS_COMPILE=/usr/local/bin/arm-linux-
Especially for the second parameter, we should use by
the absolute path, so that the system can find our
cross-compiler[6].

5.2 Set the basic nand flash partition

 For the reason that our platform use the NAND
Flash of 64M as our storage device, so we should
create a partition table to define the storage device.
The files that we modify locates in
arch/arm/mach-s3c2410/devs.c
We can modify like this:
include<linux/mtd/partitions.h>
 include<linux/mtd/nand.h>
 include <asm/arch/nand.h>
/*the64M NAND Flash partitions table*/
Static struct mtd_partition parttion_info[]={
 { name: "bootloader",
 Size:0x00100000,
 Offset:0x0,
 },
 { name: "kernel",
 Size:0x00300000,
 Offset:0x01000000,
 },
{ name: "rootfs",
 Size:0x02800000,
 Offset:0x0040000,
 },
{ name: "user",
 Size:0x01400000,
 Offset:0x02c00000,
 },
 These codes can generates the four parts of
partition table. The four parts are bootloader, kernel,
file system and user applications.
 Next, we should make the kernel support the NAND
FLASH, so we should increase some driver program,
and the programs are like that:
Struct s3c2410_platform_nand superlpplationform={
Tacls:0,
Twrph0:1,
Sets:&nandset,
Nr_sets: 1,
};
Struct platform_device s3c_device_nand={
.name="s3c2410-nand",
.id=-1,
.num_resources=ARRAY_SIZE(s3c_nand_resource),
.resource=s3c_nand_resource,
 //these dodes can support the nand flash
.dev={
 .platform_data=&superlpplatform

}

5.3 The configuration of the kernel

 If we want the system to run [6]stable and faster ,the
configuration is very important, and we choose the
configuration that related to the system hardware, and
the picture as follow:

 Figure 1 the kernel's configuration

5.4 The kernle's compiling and installing

 When we configure the kernel the next step is
compiling thg kernel, while the kernel also should be
compressed, and the format is bzImage, and the
command is like that: make zImage

 This picture is the compiling's picture

 Figure 2 linux's compiling

 After that we should install the modules because
the drivers are compiled as modules ,and we should
install the modules .the command is :
make module_installed

 5.5 linux's booting and running

 We can use u-boot as our bootloader to boot the
linux, and u-boot can load the kernel in the NAND
flash to the SDRAM. because the address space of

Figure 3 linux's decompressed
SDRAM is 0x30008000-3fffffffff,and this parameter
is supplied by the manual of Samsung. So we can see
the pictures as follow

128 Journal of Measurement Science and Instrumentation Supplement 2010

 Figure 4 linux's running

6 Conclusion

 After that steps we can see the kernel can run
stablly on the S3C2410. We adopt an easy way to port
linux to S3C2410.For the reason that the method we
adopt has both less complexity and high effciency so
it will give help to our embedded development.

References

[1] Fan Lei linux source codes BeiJing:people's public 2002.
PP68-70
[2] Ying Yu Yao Feng The Foundation Course of linux & UNIX
development BEIJING :BEIJING PUBLIC,2004 PP30-40
[3] Ayelet Israeli, Dror G. Feitelson The Linux kernel as a case
study in software evolution Journal of Systems and Software,
Volume 83, Issue 3, March 2010, PP 485-501
[4] David Egan, Paul Zikopoulos, Chris Rogers The Linux
Operating System DBAs Guide to Databases Under Linux,
2000, PP 1-23
[5] The Linux kernel as a case study in software evolution
ComputerVolume 51, Issue 14, 10 October 2007, PP 4050-4069
[6] High-speed data acquisition with the Solaris and
Linux operating systems Fusion Engineering and
Design, Volume 48, Issues 1-2, 1 August 2000, PP
193-197

(From P.120)
range of divide-by-3, it’s from 25.5 to 30.3 GHz.

The experimental data for divide-by-3 ILFD is not
available at the present time. Table 1 shows the
comparison between our presented injection-locked
dividers and other ILFDs.

4 Conclusions

CMOS direct-injection divide-by-3 frequency
dividers have been proposed and implemented in the
0.18um 1P6M CMOS and 90nm 1P9M CMOS
technologies. The operation principle of the ILFDs has
been described. And measurement results have been
presented. Measurement data shows that the
direct-injection divide-by-3 ILFD is potential for RF
system applications.

5 Acknowledgments

The authors would like to thank the Staff of the CIC
for the chip fabrication and technical supports.

References

[1] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, ”
Divide-by-3 LC injection locked frequency divider
implemented with 3D inductors,” IEICE Trans.
Electronics., Vol. E91-C, No. 6, pp. 956-962, June, 2008.

[2] H. Wu and L. Zhang, “A 16-to-18GHz 0.18µm epi-CMOS
divide-by-3 injection-locked frequency divider,” in IEEE
ISSCC Dig. Tech. Papers, Feb. 2006, pp. 2482 – 2491.

[3] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, ” A low voltage
0.35 um CMOS frequency divider with the body injection
technique,” IEEE Microw. Wireless Compon. Lett., vol. 18,
no. 7, pp. 470-472, July, 2008.

[4] S.-L. Jang, C.-F. Lee and J.-C. Luo,”A CMOS LC
injection-locked frequency divider with the division ratio
of 2 and 3,” Microwave and Optical Technology Lett., pp.
1263-1267, May, 2009

.

