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Motor imaginary-based BCI for controlling a remote car
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Abstract: This paper presents the application of an effective electroencephalogram (EEG) based brain-computer interface
(BCI) for controlling a remote car in a practical environment. The BCI uses the motor imaginary to translate the subject’s
motor intention into a control signal through classifying EEG patterns of different imaginary tasks. The system is composed
of a remote car, a digital signal processor and a wireless data transfer module. The performance of the BCI was found to be
robust to distract motor imaginary in the remote car controlling and need a short training time. The experimental results in-
dicate that the successful ternary-control by using motor imaginry may be practicable in an uncontrolled environment.
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Great progress has been made in brain-computer
interface (BCI)"" over the last decade and continues
to attract new researchers from multiple disciplines.
The most practical and widely applicable BCI solut-
ions are those based on noninvasive electroenceph-
alogram (EEG) measurements recorded from the
scalp. These generally utilize either event-related
potentials (ERPs) such as P300"’, visual evoked po-
tential (VEP)"' and steady-state visual evoked po-
tentials (SSVEPs) measures™ , or self-regulatory ac-
tivity such as slow cortical potentials”’ and changes
in cortical rhythms'®”’. The former design, being
reliant on natural involuntary responses, has the ad-
vantage of requiring no training, whereas the latter
design normally demonstrates effectiveness only af-
ter periods of biofeedback training, which needs the
subject to learn to regulate the relevant activity in a
controlled way. Such systems were recently reported
to achieve the control accuracy of 82% averaged on
four subjects in a cursor control of two dimensional
eight targets’' by adaptively updating the parame-
ters of a linear function online. BCI systems em-
ploying imagined movements of hands, feet or
tongue have been mainly introduced by Pfurtscheller
etal. in Austria® . One BCI solution that has seen
considerable success in optimizing this performance
measure relies on motor imaginary (MI), a mechan-
ical-hand orthosis was controlled by ongoing EEG
activity based on a synchronous BCI design and two
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types of motor imaginary. After a number of train-
ing sessions with varying types of motor imaginary
strategies over a period of several months, motor
imaginary of foot movement versus right hand
movement achieved a classification accuracy of close
to 100% "' . However, in the classical approach, the
majority of BCI research was performed by long
training periods for the users of BCI'"”'. Subjects
had to undergo weeks or months of training to ad-
just their brain signals to the use of the BCI. The
need for online model training is acknowledged ',
but to date there are few existing real-time adaptive
BCI systems. Some BCls are capable of online mod-
el training using supervised learning with correct in-
formation on the subject’ s intent’. However,
when users autonomously control an application,
correct class labels are not available. The need for
adaptive systems is obvious but a challenging task,
especially as class information is difficult to infer
from noisy and nonstationary EEG signals.

In this paper, a novel application of the MI-based
BCI design for a real-time car control is addressed.
We propose a method which combines common spa-
tial pattern (CSP) and support vector machine
(SVM) to classify the EEG of mental tasks online
for left-hand, right-hand and foot movement imagi-
nation corresponding to three-class control com-
mands in a BCI system. Fig.1 shows the framework
of our BCI system.
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Fig.1 BCI system

1 Preliminary analysis

1.1 Subjects

Subjects participated in the preliminary study
were three male students of Tongji University and
they were aged between 21 and 30, right-handed.
All subjects had normal or corrected-to-normal vi-
sion.

1.2 EEG recordings

Subjects were asked to sit in an armchair, with
two hands relaxing, and looked at a 17-inch com-
puter monitor approximately 1 m in front of the
subject at their eye level. 13 channels of EEG sig-
nals were recorded by a 16-channel high-perfor-
mance and high-accuracy biosignal amplifier and ac-
quisition/processing system (g. USBamp, GTEC) in
our Lab using the following channels located at the
positions of the 10-20 international electrode-posi-
tioning standard?': FC3, FCZ, FC4, C5, C3, Cl,
Ccz, C2, C4, Co6, CP3, CPZ and CP4. Skin-elec-
trode junction impedances were maintained below
5 kQ. Signals were digitized at a sampling frequency
of 500 Hz and bandpass filtered between 8 Hz and
30 Hz. The data collection procedure has three stag-
es: 1) Subject preparation; 2) Training data collec-
tion; 3) Test data collection. The paradigm
required the subject to control a cursor moving on
the monitor by imagining the movements of his right
hand, left hand or foot for 2 s with a 4-s break be-
tween trials. For each subject, the data were col-
lected over two sessions with a 15-min break in be-
tween. The first session was conducted without
feedback, and 60 trials (20 trials for each class) ob-
tained in this session were used for training and
analysis. 150 trials (50 trials for each class) in the
next session were taken as testing data to give online
feedbacks.

1.3 Data pre-processing

Excluding contamination of EEG activity (e. g.

eye movements, blinks, cardiac signals, muscle ac-
tivity and line noise) is a serious problem for EEG
classification and analysis. One way of dealing with
this problem is to simply reject segments of EEG
with unacceptable amounts of noise. However, this
may result in an unacceptable amount of data loss.
Independent component analysis (ICA) is a good
method for blind source separation, which is shown
to outperform the principal component analysis
(PCA) in many applications'™’ . In particular, it has
been applied in the extraction of ocular artifacts
from the EEG, where PCA could not separate eye
artifacts from brain signals, especially when they
have comparable amplitudes.
The ICA model can be stated as

X(7) = AS(4), (1)

where X (i) represents the observed n-dimensional
data vector, A =[anm ] represents the mixing ma-
trix and S(i)=[S,(7)-+S,, (7)] represents the in-
dependent source signals. Both A and S(i) are un-
known. Other conditions for the existence of a solu-
tion are (a) n=m (there are at least as many mix-
tures as the number of independent sources), and
(b) up to one source may be Gaussian. Under these
assumptions, the ICA seeks a solution of the form:

Y(i) = BX(i), (2)

where B is called the separating matrix, and Y (7)
is the estimation of S(7).

Recent experiments have developed new methods
for removing a wide variety of artifacts based on
ICA"™'" . In this work, we will apply cICA"" for
the artifact rejection in EEG signal analysis.

1.4 Feature extraction

The traditional CSP algorithm can handle only bi-
nary classification, so multi-class classification
needs to extend CSP algorithm to multi-class CSP.

Multi-class extensions of CSP algorithm can be
obtained from the following three strategies ' :

1) Using CSP within the classifier (IN)
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This algorithm reduces a multi-class classification
problem to several binary problems, calculating the
spatial patterns extracted by CSP method, and then
combining all the spatial patterns as the multi-class
spatial patterns. This algorithm results in high di-
mension of feature extraction coefficient by trans-
lating N-class classification problem to N(N —1)/2
binary problems.

2) Simultaneous diagonalization (SIM)

In the binary case, the CSP algorithm finds a si-
multaneous diagonalization of both covariance ma-
trices whose eigenvalues sum to one. Thus a possible
extension to many classes, i. €. many covariances

(2 )i—1...n is to find a matrix R and diagonal ma-

trices (D, );_,....y with elements in [0,1] and with
N

RZ}RT = D, foralli = 1,---,N and ZD,- = 1.

Butl this method can be done exactly forI ]1\7 =2; for
N >2, in general, only approximate solutions can
be obtained.

3) One versus the rest CSP (OVR)

By computing spatial patterns for each class
against all others, it translates N-class problem into
N new two-class problems. The OVR approach ap-
pears rather similar to the IN approach, but there is
in fact a large practical difference. OVR does multi-
class classification on all projected signals ereas IN
does binary classification on the CSP patterns ac-
cording to the binary choice. Compared with the IN
and SIM algorithm, OVR method requires to choose
much less patterns. In this work, we will use OVR
method to improve the BCI performance. Fig. 2
shows the three — class extensions of CSP algorithm
by OVR approach.
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Fig.2 Three-class extensions of CSP algorithm by OVR ap-
proach

Details of the algorithm are described as follows
with the example of discriminating left hand vs.
right hand imaginary. Let S, and Sy; denote the
corresponding EEG matrices under two conditions

(left hand and right hand) with dimensions N X M,
where N is the number of selected channel, M is the
number of samples in each trial. The normalized
spatial covariance of the EEG can be calculated as
S.SL Sk Sk

X = ZT’<SLSE)’ X = U‘(SRSgy (3
where tr() is the trace operator that sums up the di-
agonal elements of a matrix, T denotes the trans-
pose operator of a matrix. The final spatial covari-
ances X, and Xy are respectively computed by aver-
aging over the trials under each condition. The
composite spatial covariance matrix is defined as

X:XLJ”XR. (4)

As X is a symmetrical matrix, it can be factored
into its eigenvectors by SVD

X = X, + Xg = RyA\Ry, (5)

where R, is the matrix of eigenvectors and A4, is the

diagonal matrix of eigenvalue. Note that the eigen-

values are assumed to be sorted in descending order.
The whitening transformation matrix is

P =i R;. (6)

By P, the individual covariance matrices X, and
X are transformed to

U,_= PX, P', U, = PX,P", (7)

where U, and Uy share common eigenvectors and
the sum of corresponding ecigenvalues for the two
matrices will always be one

U = UrU", U, = UL U",
AL+ A, =1, (8)

where I is the identity matrix. Since the sum of two
corresponding eigenvalues is always one, the eigen-
vector with largest eigenvalue for U, has the small-
est eigenvalue for Uy and vice versa. This property
makes the eigenvectors U useful for classification of
the two distributions. The projection of whitened
EEG onto the first and last eigenvectors in U will
give feature vectors that are optimal for discriminat-
ing two populations of EEG in the least squares
sense.

With the projection matrix W= U" P, the decom-
position (mapping) of a trial E can be transformed
into uncorrelated components

Z = WE, (9)
where Z is EEG source components including com-

mon and specific components of different tasks.
The original EEG E can be reconstructed by
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E=WwW'Z, (10)

where W' is the inverse matrix of W. The columns
of W ! are the common spatial patterns and can be
seen as time-invariant EEG source distribution vec-
tors.

1.5 Classification

SVM was used as the classifier model in this work
because of its good classification performance and
its speed of training”*"’. SVM is essentially a linear
classifier and can be described as

N
% |l wl?+ CZ £, subject to
i=1
yi(w'x, +b)=1-¢6, G =1,-,N), (11)

where C >0 is a regularization parameter and §; is
the slack variable, w is the weight vector and b< R
is the offset, x; is the support vector of training data
and y, €1 — 1,1} is their corresponding class label.
The SVM is based on the idea of separating the
training data x; with labels y; by means of a linear
hyperplane, such that the minimal distance of each
point from the hyperplane, i.e. the so-called mar-
gin, is maximized. The regularization parameter C
controls the tradeoff between two objectives: a
smaller C will result in a larger margin around the
hyperplane, but may cause a higher error on the
training data. A larger C will decrease the training
error, but possibly reduce the generalization error
by enlarging the margin. In this study, we used a
SVM with a radial basis function (RBF) kernel with
7 = 0.1. The SVM was trained with regularization
parameter C =0.8, which places an upper bound on
the fraction of error examples and lower bound on

the fraction of support vectors .

2 Online training and controlling

The object of the BCI is to gain ternary control of
the moving direction of a remote car using only the
player’s EEG. The system is composed of a remote
car, a digital signal processor and a wireless data
transfer module as shown in Fig. 3. Another wire-
less data transfer module is connected to PC through
the RS232 port. The commands issued by the user
are sent to the remote car through the RS232 port of
the digital signal processor. These commands are
translated by retrieving the information pre-stored
in the memory and then sent to the device to be con-
trolled by the user. In the training, we suppose that
left/right hand imaginary means turn to the left/
right and foot imaginary means go forward (Fig.4).
The control begins with a brief classifier training
period. The training process consisted of the repeti-
tive epoches of triggered movement imaginary tri-

als. Each trial started with the full black screen,
and at 3 s, a visual cue was displayed at the center
of the monitor for 5 s, representing the mental task
to perform. Depending on the symbols (left arrow,
right arrow, down arrow) presented, the subject
was instructed to perform different tasks: imaging a
movement of left hand, right hand and foot. The
trail was ended after 5 s imagination and a blank
screen was shown until the beginning of the next tri-
al. The mental tasks represented by visual cue were
chosen randomly to avoid adaptation. During this
training period, feedback is presented in order to
ensure compliance.

" Digital signal
: processor e

/ - —
N Wireless data
B\ transfer module‘

Fig. 4 Online feedback paradigm of the three-class motor
imagery tasks and car’s movement during the controlling

Three male subjects aged between 21 and 30 par-
ticipated in the following test procedure to assess
performance of the online controlling. All subjects
had normal or corrected to normal vision. When the
remote car was controlled the EEG was analyzed by
the CSP and SVM method described above for the
online data.

3 Results and discussion

We utilize a novel method of on-line classification
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based on multi-class CSP for feature extraction and
SVM as a classifier. The best classification results
for three subjects are 86.3%, 91.8% and 92% . The
results suggest that the event-related (de)synchroni-
zation (ERD/ERS) elicited by MI can be successful-
ly used to make decisions in a real time BCl-con-
trolled environment. The problem we frequently en-
countered in a BCI system is that the performance is
normally difficult to be maintained when the system
runs from offline training sessions to online opera-
tion. One could suspect this to be caused by bad
model selection strategies which could in principle
choose overly complex classification models that
overfit the EEG data. When using online training it
is difficult to select when the model should be
trained and when it should be kept static. It is also
difficult to know when the training should be done
by the user and when by the model, and what hap-
pens if both earn simultaneously. Longer experim-
ents are needed to address this question. Further-
more, choosing the correct speed for adapting the
classifier in a supervised framework is crucial since
too quick updates can produce false results and erro-
neous feedback.

4 Conclusion

This paper presents the application of an effective
EEG based BCI for controlling a remote car in a
practical environment, which is able to translate the
user’s control intentions during online experiments,
so that online training and adaptation of the motor
imaginary in BCI can be effectively used. The ex-
perimental results show that the successful ternary-
control using MI may be practicable in an uncon-
trolled environment.
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