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Ultra-tight GPS/INS integration based long-range
rocket projectile navigation method
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Abstract: Accurate navigation is important for long-range rocket projectile”’s precise striking. To obtain stable and high-per-
formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav-
igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal,
and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with
strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing the-

ory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional

methods. It provides reference for long-range rocket projectile navigation.
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Long-range rocket projectile is a kind of widely
used weapon equipment due to distant range and e-
normous fire power. Because the attacking precision
of traditional rocket projectile can not fulfill the re-
quirements of accurate striking., guidance rocket is
designed to solve this problem. Guidance rocket pro-
jectile needs to implement flight control and ballistic
correction in the course of the flight to hit the target
precisely. In this case, the information of position
and flight velocity must be measured in the course of
the flight. In current navigation systems, global po-
sitioning system (GPS) and inertial measuring unit
(IMU) are used widely''*!. Besides, celestial naviga-
tion system (CNS) and geomagnetism navigation

system (GNS) are good choices, too'*.

Every navi-
gation system has its own advantages.

As the projectile body is made of steel, it is easy to
be magnetized in magnetism environment. Complex
magnetic field will take place in the course of the
flight when the projectile slices the magnetism field

and the electromechanical system works. Therefore,
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magnetometer is not a good choice for projectile navi-
gation. Projectile’ s roll angular velocity is high in
the course of the flight, thus the celestial sensor can
not capture the star constellation accurately and the
CNS can not be used by projectile. But GPS and IMU
do not yield to those constraints. The measurement
error of GPS does not accumulate with time flying,
but its accuracy is not high enough especially in high
dynamic environment. The real-time feature and in-
stantaneous accuracy of IMU are outstanding, but its
measurement error accumulates with time flying.
Therefore, many literatures made use of all the ad-
vantages of GPS and IMU by integrating them'' %,
but the current integration model used on rocket pro-
jectile and other guidance projectiles is loose integra-
tion, In this case, GPS signal may lose lock due to
angular velocity, orbit error of satellite, signal prop-
agation error, etc. Ultra-tight integrated model is
proposed to solve this problem. It has been used in
[3.5]

many fields with satisfying performance, but

there is not any literature using this principle to en-

Foundation items: Project Funded by Chongging Changjiang Electrical Appliances Industries Group Co. , Ltd.

Corresponding author: ZHAO Han-dong (hd_zhao@nuc. edu. cn)



154

Journal of Measurement Science and Instrumentation

Vol. 6 No. 2, Jun. 2015

hance navigation precision of rocket projectile. We

introduce it into projectile navigation and improve it.

1 Ultra-tight GPS/INS integration

MEMS IMU is used widely in guidance projectiles
as its cost is low and cubage is small, but its measur-
ing bias accumulates quickly. As a result, GPS is of-
ten used to assist the system in reducing error accu-

mulation. Its integration model is shown in Fig. 1.
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Fig. 1 Loose integration of GPS and IMU

In Fig. 1, IMU and GPS measure the position sepa-
rately, and then fuse the position information. In
this case, GPS output bias can not be reduced, which
affects ultimate fusion result. To solve this problem,
we can constrain output noise of GPS receiver via
IMU real-time output before GPS outputs position

51, and then integrates IMU position in-

information
formation with GPS position information. The ulltra-

tight integration model is shown in Fig. 2.
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As shown in Fig. 2, for ultra-tight integration, the
signal acquisition is responsible for carrier phase
tracking and locking. Traditionally , the carrier phase
is got from phase locked loop (PLL) in GPS receiver.
PLL principle can be expressed briefly in Fig, 3.
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signal
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Fig.3 PLL signal process procedure

To improve measurement accuracy of carrier
phase, the common method is to improve PLL’ s
tracking precision of satellite signal"*™. The tracking
error of PLL is related to tracking loop’s tape width.
With the assistantce of IMU, we can solve the con-
tradiction between loop noise and dynamic perform-
ance. By measuring the carrier velocity with IMU,
the Doppler shift between carrier and satellite is esti-
mated, and introduced into the oscillator control™,
The use of IMU information can compensate the mo-
tion state and reduce the tracking loop”’s requirement
for tape width, which reduces the noise effect on car-
rier phase tracking. The principle of IMU assisting
PLL is shown in Fig. 4.

In the ultra-tight integration model, IMU informa-
tion is used to get more accurate GPS output, and
GPS information is used to integrate IMU informa-
tion in the level of position to get more accurate navi-
gation data in return. When IMU position is fused
with GPS position, federated filter is used widely. In
this study, federated filter is used and improved ac-

cording to local filter and information sharing princi-

Fig. 2 Ultra-tight integration of GPS and IMU ple.
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2 Federated filter

Federated Kalman filter theory is a special form of
distributed Kalman filtering fusion method proposed
by American scholars Carlson in 1998. It is composed
of several sub-filters and a main filter, and is a block-
estimation and two-step cascade distributed filtering
fusion method"*™,

By using information distribution principle, we can

get the optimal fusion output. It has high-precision,
high fault tolerance and low computation burden
properties.

In structure, it is different from parallel filtering
algorithm, in which sub-filters are completely inde-
pendent on each other. In federated filter, each sub-
filter shares state information and measuring infor-

mation from main filter. Its structure is shown in
Flg 5[7 10]
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General discrete system state model is given by
Xk =0k/k—DX(k—1D) +T(ROWk), (1)

where X(k) is n X1 system state vector with time k;
®d(k/k—1) is state transition matrix from time #—1
to time k3 I'(k) is nXr system noise matrix; W(k) is
r X1 Gaussian noise and its variance is r X r matrix
Qk).

We can use process noise variance inverse matrix
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Fig. 5 Federated filter model
Pl =P*+P' +--+P, &))
X, =P 2P X, D
i=1
X =X,. (5
P = pP,', (6)
0.,'=0/"+0Q"'+--+0,", (7
o' =p0.". (3

Q7! to represent state information of the equation. In
addition, the state estimation can be presented by va-
riance inverse matrix P~! and R™! is variance inverse
matrix of measurement noise in measurement equa-
tion. Assuming that state estimation vector, system
estimation variance matrix and state vector variance
matrix are denoted by X;.Q; and P; for local filter i,
and station estimate vector, system estimation vari-
ance matrix and state vector variance matrix of main
filter are denoted by X, ,Q, and P,, the main filter’s
information will be distributed to every local filter by

the following regulation,

P,'X, =P 'X, +P7'X, ++P'X,, (2

where B is information distribution coefficient and

complies with the following regulation,

DB 4B, =1

i=1
0<B<1.i=1.2,.n 9

Generally, if the system includes n local sensor
systems and each system carries out measuring inde-
pendently, there will be n individual measuring data.
For local sensor 7, its state equation and measuring e-

quation can be presented as

X (k) = @ (k/k— DX, (k— 1D +TRW: (&), (10)
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where X; (k) is local system’s state vector; Z; (k) is
local system’s measuring vector and V,; (k) is Gaussi-
an noise array of the corresponding local system.

Compared with other distributed fusion algo-
rithms, federated Kalman filter has especial advan-
tage in the process of information feedback and infor-
mation distribution'™, In the distribution process, in-
formation Q; (k) and P; (k) of each local system will
be distributed by

Q. (k—1) =3'Qk—1),
P(h—1) =8'P,(k—1), (12)
X(h—1 =X, (k—1).

As seen from Eq. (12), after each integration cir-
culation, each sub-filter is re-obtained from the opti-
mum initial value of the integration output of the
main filter, the sub-filter also gets the initial value
which has been optimized to avoid error cumulation.
After the distribution of information, each sub-filter
completes time update alone according to their own

recursion equation. The process can be expressed as
X (k/k—1) = ®k,k— DX, (k—1), (13)

P (k/k—1) = @b —1DP;(k— D@ (k. k— 1)+
Ik k—1DQ:(k— DI (kyk—1).

1= 1,2, ,n. (14)

Because the main filter does not receive the meas-
uring value, measurement update is completed only
in sub-systems. As a result, there is no main filter

measurement update., The update process is de-

scribed by
P'(k) =P (R/k— 1) +H GOR'H,; (k). (15)
P ()X (k) = P (k/k— DX, (k/k—1) +
H (OR™ (R Z; (k)
i=1.2,n. (16)

According to Egs. (10)—(16), we can get X; (k).
Then the estimation of each sub-filter will be inte-
grated in the main filter. Finally, the optimal estima-

tion is got. Fusion process can be expressed as

Pg:[lrl1+1tzl+"'+mljilv (17

X, =P[PI'X+P'X++P'X] =
P> PX.. (18)
i=1

After fusion is finished, the optimal output of the
main filter will be assigned to each sub-filter again.
For the purpose of computing easily, distribution co-

efficients are given by

Jﬁ __trace(P;)
2 trace (P;) 19)

L?m =1-—238.

The notable feature of federal filter is that the fil-
tering processing is done in the sub-filter, and the in-
tegration processing is completed in the main filter,
then the main filter will give a feedback to sub-fil-

terL&loj

. Therefore, the performance of the sub-filter
will largely affect the overall performance of filtering
fusion.

Just like what is expressed in Fig. 5, the optimal
fusion part gets information from the local filter,
therefore, the output accuracy of the local filter is
rather important for the fusion result.

As the motion state has strong nonlinear feature,
the traditional Kalman filter can not accord with this
condition well, unscented Kalman filter (UKF) is in-
troduced to solve this problem™®, but the data sta-
bility performance of UKF has not been proved up to
now. Since its basic principle is unscented transform
(UT), using 2n+1 sigma points, the amount of cal-
culation is huge. Based on high dimension accuracy
and data stability, cubature filter is adopted in this
paper.

Cubature Kalman filter (CKF) is the same as un-

[11-12]

scented Kalman filter , approximating the ran-

dom variable density function by weight sampling.
The difference between UKF and CKF is that CKF
produces sigma point through cubature regulation in-
stead of UT regulation. For common nonlinear state
equation and observation equation, given that they

satisfy
X(k) = fi(X(k— 1)) +T(OW(k), (20)

Z: (k) = h,(X(k)) +V,(k), 2D
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then cubature filter based time update process are as
follows: given that the posterior probability density
function p(x(k—1) of time £—1 is known, we can
decompose error variance P(k—1) via Cholesky de-

composition"'" as
P(k—1) =SGk—DST"(F—1D. (22)
By calculating cubature point, we can get

x,(k/k—1) =SGk—1D&+XEk—1), (23)

where E,-:J%[ll-, i=1,2,, m, m=2n; [ 1],

means the element i in the cubature point sett!'?),

Propagating cubature point through state equation

as

xi(k/k—1) = f(x;(k/k—1). @40

Estimating the state prediction value of time £ as
XCk/k—1) = LD g (k/k—1. (25
=1

As a result, the prediction value of error variance

of time % can be expressed as

m

PC/k—1) = L 3y (/= Dl (/= 1) —
1

Xk/k— DX " (k/k—1) +Qk—1). (26)

After calculating the value of P(k/k—1) ., P(k/k—

1) is decomposed by cholesky decomposition as-'''?

Pk/k—1) =Sk/k— DS (k/E—1). (27)
Based on this cubature point is calculated by
xi(k/k—1) =Sk/k— 1S (k/E—1). (28)

Propagating cubature point via measuring equa-

tion,

z,(k/k—1) = h(x;(k/k—1)), 29

ZU/k—=1) = L3z kb= (B0
i—1
P,k/k—1) — %z,v(/e//e Dk —1) —

2(k/k—DZ"(k/E—1) +R(k), (3D

Py (k/k—1) — %xi(lz/k D k1) —

Xk/E—1DZ (k/E—1). (32)

So we can get the state estimation,

X(k) = X(k/k—1) + KR (ZE) —Z(k/E— 1)),
(33)

K(E) = Py, (k/k— DP(k/k—1). (34)

At the same time, we can get the current state va-

riance matrix,

P(k) = P(k/k—1) —W(R)P (k/k— DW' (k).
(35

CKF algorithm is based on spherical-radial cuba-
ture criteria. For all nonlinear state equations, there
is not linearization process of the model, but it
spreads cubature point through the equation, so it is
applicable to all forms of nonlinear models. This arti-
cle takes CKF as sub-filters in federated filter, which
can reduce the adverse impact of the filter caused by
nonlinear factor. Meanwhile, it reduces the amount
of calculation.

Refs. [11] and [12] proved the validity of cubature
filter in the complex environment and provides a ref-
erence for application, but the filtering result still
does not satisfy the requirement well when using tra-
ditional cubature filter because the model inaccuracy
factor is still the main problem which affects the last
filter accuracy. To solve this problem., Refs. [13]
and [ 14] proposed a strong tracking approach. Based
on this, the strong tracking principle which is used in
unscented Kalman filter is introduced into cubature
filter in this paper to weaken the effect of modeling
error. The operational process is as follows.

For Egs. (31)—(32), the calculation process is im-

proved as

Py (k/k—1) = A0 = 3z, G/ — Dzl (R/k—1) —
i=1

Z(k/k—1DZ"(k/k—1) + R, (36)

Py (k/k—1) = 200 =3 G/ — D2l (/b — 1) —
i—1

X(k/E—DZ (k/E—1), (37)

P(k) = A(R)P(k/k—1) —W(R)P, (k/k— DW' (k) ,
(38
A(0) A>0,

Alk) = 39
1 A< 0,
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_ (NG
AO = M) (10
Jr(nr'f(n,
V, (k) = ler(k—l)Jrr(k)rT(k) (41)
ler ’

where N(&) =V, (k) —R (%), R(k) is the observation
system noise, r is the observation vector prediction

residual error, and

M) = L5 2k —1) —
mi=
Zk/E— 1) (zi(k/E—1) —Z(k/E— 1T, (42)

where 0<Zp=<C1 is the forgetting factor, and f3 is the
reduction factort'* ',

In traditional federated filter, as expressed in
Fig. 5, the allocation factor 8 determines the fusion
result, and the parameter f is scalar, which can not
reflect the effect of observability degree. Therefore,

we improve it based on vector sharing principle**'%.

After the improvement, the fusion structure of
GPS/INS based federated filter is shown in Fig. 6.

b, = /%(A,-+ri)*] , (43)

where A;=diag(a; sap = sam) ., (44)

_ 1/2;
1/;{1]‘ + 1//\2_,‘ + + 1//1Nj ’

(45)

ai;
1= 1729""N; ] = 172"”’”’
P; :LI'A[LIT,
A; = diag(A;1 s Az 220 )

r, — diag(m ST st 9T ) s

= i , 46
T 01j +02j+‘“+0:\91 ( )

where ¢; is the observability matrix singular val-
uel1516]

X, bPb:

= Master filter
&2 P Time
| INS HCubaMe filter 1 update
X,, b:P.b: L .

L .5 4 oh
252 >

| GPS }——ICubature filter 2~—>¥’ Optimal

fusion

Fig. 6 Vector sharing principle based federated filter

3 Simulation

To test whether this method proposed in this arti-
cle is useful and available, we carried out simulation
based on the following information.

The gyro constant drift 0. 3 (°) /h, white noise va-
riance is 0. 02° and the first order coefficient 5 X
10°%; accelerometer constant drift is 100 ps and
white noise variance 100 pg; GPS signal intermediate
frequency is 7 MHz, sampling frequency is 30 MHz,
carrier phase loop noise bandwidth is 10 Hz, damping
factor is 0. 7, code loop bandwidth is 2. 5 Hz, carrier
loop gain is 0. 3 and code loop gain is 0. 5; By the
help of IMU, carrier bandwidth is 0. 3 Hz, and code
loop is changed into the first order and its bandwidth
is 0. 5 Hz.

In the simulation, the flight time is set at 600 s,
the position and velocity error of two different meth-
ods are shown in Fig. 7 and Fig. 8. The loose integra-
tion method fuses the output information of GPS and
INS with UKF federated filter, and the ultra-tight

integration method is the method proposed in this pa-

per.
15 T T T T
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) | 1 L 4 = Ultra-tight integration
=2 -
8
=
Q
=l
=]
=]
‘D
o
(=
0

- Tight integration
= =| me—Ultra-tight integration

el

e ==

Y- position error (m)
o

]
100 200 300 400 500 600

Z - position error (m)
=)

Fig. 7 Position estimation error statistics
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Fig. 8 Velocity estimation error statistics

It can be seen that the positioning accuracy of the
proposed method is higher than that of traditional
GPS/INS integration method. However, the velocity
measuring is not obviously good because the output
frequency of GPS is much less than that of INS.
Therefore, the INS offers the velocity mainly in both

kinds of integration methods.

4 Conclusion

A new navigation method for long-range rocket
projectile based on information fusion algorithm is
proposed in this paper. The simulation results show
that the positioning accuracy of the proposed method
is higher obviously than that of traditional method.
As the computing amount of cubature filter is less
than that of UKF, this approach consideres the com-
puting time and output precision at the same time,

providing a new method for engineering application.
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