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Abstract — An approach based on multi-scale chirplet sparse signal de-
composition is proposed to separate the multi-component polynomial
phase signals, and estimate their instantaneous frequencies. In this
paper, we have generated a family of multi-scale chirplet functions
which provide good local correlations of chirps over shorter time inter-
val. At every decomposition stage, we build the so-called family of
chirplets and our idea is to use a structured algorithm which exploits
information in the family to chain chirplets together adaptively as to
form the polynomial phase signal component whose correlation with
the current residue signal is largest. Simultaneously, the polynomial
instantaneous frequency is estimated by connecting the linear frequen-
cy of the chirplet functions adopted in the current separation. Simula-
tion experiment demonstrated that this method can separate the com-
ponents of the multi-component polynomial phase signals effectively
even in the low signal-to-noise ratio condition, and estimate its in-
stantaneous frequency accurately.
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1 Introduction

According to the Stone-Weierstrass theory, with a
large number of signal processing applications such as syn-
thetic aperture, radar, imaging and radio communica-
tions, the phase of the observed signals can be modeled as
a polynomial function of time™ . Such signals are com-
monly known as the Polynomial Phase Signals (PPS). Re-
sults in the literature on estimation of PPS parameters are
mostly limited to the mono-component case such as fast
instantaneous frequency estimation® , the well-known
High order Ambiguity Function (HAF)”*, etc.

In 1991, Peleg and Porat introduced the High order
Ambiguity Function (HAF) to analyze the constant ampli-
tude PPS™"'. HAF based techniques reduced the order of
PPS successfully by multiplying it with a conjugated lagged

* Received: 2010-01-10

copy of itself. In recent years, HAF has proven to be a
powerful tool and several of its variations have appeared
in the literature”*'"". However, signals appeared in real
life often have multiple components, leading to their pa-
rameter estimations pose a great challenge. When HAF is
applied to multi-component PPS (mc-PPS), it will emerge
a large number of cross-terms which are PPS th-
emselves ™ . Consequently, M. Z. Ikram and Zhou Tong
proposed the bottom-up PPS parameter estimation
algorithm®. This algorithm always starts with PHAF of
lowest order and increases in PHAF order until a strong
peak is observed. To some extent, it can reduce the influ-
ence of those cross-terms. However, the computing work-
load will be enormous if the signals have high order poly-
nomial phase signal components and lots of components.

Another methods available for the study of mc-PPS
generally fall into non-parametric techniques that employ
time-frequency distributions to track or estimate the un-
known Instantaneous Frequency (IF) of the multi-compo-
nent polynomial phase signals (me-PPS)"""*'. However,
the conventional time-frequency distributions for multi-
component Polynomial Phase Signals (mc-PPS) generally
suffer from interference terms, which will obscure the
true location of the auto-components in the resulting time-
frequency distributions and consequently produce the IF
estimation error. In order to reduce the undesired inter-
ference terms, various interference reducing distributions
and techniques have been introduced such as PWVD,
CWD, ZAM *"™' | etc. However, for a large class of sig-
nals, there is a trade off between good interference sup-
pression and high auto-component concentration.

The Multi-component polynomial phase signals can
be provided with favorable similarity by chirplet signals in
a short time interval. Combining the chirplet path
pursuit " and the sparse signal decomposition'”’ , we pro-
pose a method based on multi-scale chirplet sparse signal
decomposition which can separate the multi-component
polynomial phase signals and estimate their instantaneous
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frequency. In this method, with different scale coeffi-
cients, time span of analytic signals is divided into dynam-
ic time supporting intervals, and then the signals are pro-
jected and decomposed by multi-scale chirplet base func-
tion. From basis function set which has the maximum pro-
jection coefficients in each time supporting intervals, we
find out the basis function combinations which can make
the energy of the decomposed signals maximum, and
chain them to form the signal component adaptively which
correlates well with the analysis signals and whose instan-
taneous frequency is of physical significance. Keep on de-
composing until the result satisfies the given terminating
principle.

Simulation analysis shows that the present method
can effectively separate PPS components contained in mc-
PPS signals, and there is no interference as the quadratic
time frequency distribution. It enjoys favorable time fre-
quency gathering and higher precision of instantaneous
frequency fitting. Since the correlations of the noise com-
ponents and the chirplet signals are bad, this method have
good anti-noise ability. It is effective even if the signal-to-
noise ratio is very low. It is suitable for the separation of
multi-component polynomial phase signals with noise. The
present method provides a new method for detecting, sep-
arating and parameter estimating of mc-PPS.

This paper is organized as follows. In section 2, the
method of multi-scale chirplet sparse signal decomposition
is introduced in details. In section 3, we present an algo-
rithm that separates the multi-component polynomial
phase signals and estimates the instantaneous frequency of
the components. In section 4, a three-component fourth
order multi-component polynomial phase signal is taken as
an example to verify the validity of the present method,
and analyze the influence of noise on the present method.
Finally, the conclusions are drawn in section 5.

2 Multi-scale chirplet sparse signal decom-
position

Based on signal analysis theory, any signal f(z) can
be expanded into a linear combination of a group of basis-
functions """, that is

() = Za”h”. (1)

If the group of basic fulilcetizons is of orthogonal basis,
then inner product can be used to compute their expansion
coefficients, that is

a, = (f@),h)l M h, I (2)

The value of the expansion coefficient reflects the
correlation between f(z) and the basis functions. The ba-
sis function library adopted in the present paper is the
multi-scale chirplet base functions

D<h“,,'/’u’1 ) = {ha”,/yﬂ,I ()} =

. 2
{Kaﬂ ,II/L’IC*I((l’u[‘F/}’u[ )11 (t) % ) (3)

Where D is the basis function library; huu,/,_z(t) is the

multi-scale chirplet base functions; I is the dynamic analy-
sis time interval, and I = [AN27 ~ (k+1)N27 ], where
7 is the analyzing scale coefficient, j = 0,1,---,log, N -1,
N is the signal size, # = 0,1,--,2"" ; K, . .1 is the nor-
malization coefficient, set || h, , ;[ = 15 a, is the fre-

quency offset coefficient, and b, is the rate of frequency
modulation. @, and b, may depend on the scale and the
prior information about the objects of interest. According
to sampling theorem, a, + 2b,t should be less than f12,f
is the sampling frequency; 1,(z) is the window function;
itis1 whent € ToritisOwhent € I.

In multi-scale chirplet sparse signal decomposition, it
projects the signals onto the multi-scale chirplet base func-
tions. The maximum projection coefficient and its corre-
sponding chirplet base function can be obtained from each
supporting interval I , and the linear frequency of that
basic function has the most closely correlation with the
frequency of the analytic signal in the time supporting in-
terval I .

The formula for the maximum projection coefficient
B, in supporting interval I is

B = maX<f(l>,hau,/1ﬂ,1(t>>~ (4)

Suppose ¢; (¢) is the decomposed signal represented by
B = max(f(¢),h, , ;(¢)), the maximum projection co-
efficient in dynamic analysis time interval I , then

e (1) = abs(2B)e ™ = (1), (5)

In dynamic analysis time interval I, f(z) = C,(¢) +
7, (¢), where r,(¢) is the decomposed residual signals.

The more similar the signals with the multi-scale
chirplet base functions, the larger their projection coeffi-
cients, and the bigger the energy of basic functions. Thus,
an appropriate connecting method for dynamic analysis
time interval is required. With the method, the total en-
ergy of basis function signals during the whole analysis
time reaches maximum, that is

max( > () ),

IS

11" =165, e, ©6)

11 " covers the whole analysis time period, no overlap-

where

ping, whose maximum projection coefficient and basis
function are

B= 1B B s (7)

H = {haﬂ’b/ﬂll 5huﬂ,l;u,12’.”}~ (8)

The connecting method of || should guarantee that

during the entire analysis time period the total energy of
connected basis functions is the maximum, while the fre-
quency curve formed by adjoining piecewise linear fre-
quency of the basis functions is the instantaneous frequen-
cy estimation of analytic signal’ major frequency compo-
nent.



Vol. 1

De-jie YU, Jie-si LUO, Mei-li SHI 19

The connecting rule of tracking method based on the
chirplet path pursuit™® is as follows:

1) Initialization. Suppose 7 is the sequence number of
time supporting intervals, d (i) is the total energy of de-
composed signals before the 7th time supporting interval,
pre( 7) is the sequence number of the proposed time sup-
porting interval which connects with the 7th time support-
ing interval, and e(7) is the energy of the decomposed sig-
nals which correspond with the maximum projection coef-
ficient in the 7th time supporting interval. When initial-
izing, suppose d(i) = Oand pre (i) =0 .

2) For every element I, in the set of dynamic analysis
time interval {I;,i € Z| , find out every next set of dy-
namic analysis time interval {[;{ , that is, the starting
time of every element in { I, | is adjacent to I; .

With the sparse signal decomposition method, the
signal component with bigger projection coefficient will be
decomposed first and the signal component with smaller
projection coefficient will be decomposed later. But,
when several components are of the same amplitude, they
have the identical projection coefficient, which will result
in cross-over decomposition. In order to find a solution to
the equal amplitude decomposition, a reserve coefficient is
introduced in supporting zone connection in the present
paper, which is to reserve basis functions with similar pro-
jection coefficient in decomposition. If

d(i)+e(i) >d(G) x5, 9)

then
d(j) =d(j) +e(i), (10)
pre(j) = i. (11)

Usually, ¢ takes 1. But, if the component signal frequen-
cies are still cross modulated, the value of ¢ will be re-
duced gradually until the component signals with the iden-
tical projection coefficient can be decomposed.

Suppose ¢, 7" are the signal component and the re-
sidual signal component respectively from the decomposi-
tion, then

= D (), (12)
Lell”
r = 2 r,i(zf) =" - Z C’,-<t)' (13)
Lell” Lell”

Go on decomposition until it satisfies the given termi-

nating principle.

3 Separation and instantaneous frequency
estimation of multicomponent polynomi-
al phase signals

Any multi-component polynomial phase signal (mc-
PPS) can be described with parametric model as the fol-
lowing formula

K
I(?’l) :ZAkej‘/’k(n) —
k=1

K 7>‘Mla a "
ZAke_””*“ ro o= 0,1,,n — 1. (14)
k=1

Where £ is the number of PPS components, A, is the am-
plitude of £th component, M, is the highest polynomial
phase order for the #th component, and {a; ,, |+, are the
polynomial phase coefficients for the £th component. We
allow M, to be different for different % .

The polynomial phase signal components are always
similar to the chirplet signals over a shorter time interval,
and the instantaneous frequencies of its components can be
well fitted by straight lines as well. In multi-scale chirplet
sparse signal decomposition, the chirplet base functions
are approximating adaptively to analytic signals in each
time interval. Theoretically, it can be used to separate the
multi-component polynomial phase signals and estimate
their component frequencies.

Suppose the analytic multi-component polynomial
phase signals are x(z) . With multi-scale chirplet sparse
signal decomposition, the decomposition algorithm is as
follows:

1) Set a threshold ¢ .

2) Initialization. i is the number of decomposition,
and suppose the initial value is 1;

3) Get component ¢; from the ith decomposition,
whose corresponding frequency is f; .

4) Carry out differential operator on f; , and V f;
denotes the derivative of f; . If the sign of V f; is not
changed, and max(|V f; |)< ¢, then ¢, f; from this
decomposition is valid, doi = 7 + 1 ,return to step (3).
Otherwise, the decomposition is invalid, doz = i — 1,
and the decomposition terminates.

In the method, the terminating principle is aiming at
the monotonous continuity of multi-component polynomial
phase signals. max(|V f; |)< ¢ means that the frequency
difference between two adjacent sampling points should
not be too large.

Suppose the decomposed signal component is ¢, , ¢, ,
-+, cx , then

K
x(t) = 2 A =
=

K
M, m
Z A 2t =
k=1

¢t oyt (15)
150y, "¢k just correspond with K (the number of PPS
components) PPS components whose multi-component
polynomial phase signal x(z) energy ranks from high to
low, which fulfills the separation of multi-component
polynomial phase signal. Meanwhile, the instantaneous
frequency estimation of the corresponding components is
accomplished by adjoining the linear frequency of the ba-
sic functions which are employed to separate the mc-PPS.

4 Simulation example

Take a three-component fourth order multi-compo-
nent polynomial phase signal as an example. The simula-
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tion signal is expressed as A :
s(n) =cos Qux (n* + n* +n> +5n)) + £ ol AR AR R
0.8 cos 2nx (3n + > +20m)) + (16) £ ‘ . . . .
0.6 cos (2 % (5u* +30m)). 200 e 2
Where n» = 0,1,---,511 , and the sampling frequency f, = g gg S ——
200 Hz, namely the sampling time is 2.555 s. The simula- § 20 1
tion signal and its frequency are shown in Fig. 1. Decom- g0 ; 05 g 15 G 5
pose the signal with multi-scale chirplet sparse signal de- Time (s)

composition method. The results are shown in Fig. 2,
Fig.3 and Fig.4.
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Fig.1 Simulation signal and its frequency

From Fig.2~Fig.4, we can see that the components’
estimation errors and the frequencies’ estimation errors are
all very small. Moreover, if numerical analysis is carried
out on the decomposition results, the RMSEs of their cor-
responding components” estimations are 0. 148 8, 0.090 4
and 0.081 6 respectively, and the RMSEs of their corre-
sponding frequencies” estimations are 0.469 2, 0.3525
and 0, respectively. These results prove that the present
method can not only separate the multi-component poly-
nomial phase signal components effectively, but also esti-
mate their instantaneous frequencies accurately.
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Fig.2 Decomposition results and differences of the first component
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Fig.3 Decomposition results and differences of the second component
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Fig.4 Decomposition results and differences of the third component

Because of the bad relation between the noise com-
ponents and the chirplet signals, the present method have
good anti-noise ability theoretically. Adding the white
noise to the above analysis signals makes the value of the
SNR vary from 0 dB to 10 dB with an interval of 1 dB.
We obtain the RMSEs of their corresponding components’
estimations and frequencies’ estimations which can be seen
from Fig.5 and Fig. 6. The third component is a chirplet
component itself, and it is correlated well with the chirp-
let function. Thus from Fig.5 and Fig. 6, we can observe
that the thirddecomposition component error and frequen-
cy error are smaller than the first and second components.
Even The accuracy rate of frequency estimation can be
100%. While within the signal-to-noise ratio interval
[0 dB 10 dB], all the RMSEs of the three frequencies’
estimations are no more than 0.9,and the RMSEs of the
three signal components’ estimations are all lower than
0.4. Thereby, the present method performs well in resis-
tance of noise interference and is suitable for the separa-
tion and instantaneous frequency estimation of multicom-
ponent polynomial phase signal with noise.

m 0.8 N -‘iSt component |
% 0 4| " 2nd component . "
3rd component
Of +—+—+—+—+ £ .
0 2 4 6 8 10
SNR(dB)
Fig.5 Influence analysis of noise on signal frequency estimation

0.4 ;
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Fig.6 Influence analysis of noise on signal separation

5 Conclusion

1) The simulation analysis shows that the Polynomial
Phase Signal component (PPS component) contained in
the multi-component Polynomial Phase Signal can be ef-
fectively separated by the multi-scale chirplet sparse signal
decomposition method. The frequency curve, which is
formed by connecting the linear frequency of the basic
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chirplet functions used in the separation, can be regarded
as the frequency estimation of PPS components. Further-
more, the frequency estimation is of higher precision.

2) The present method provides a new idea for ana-
lyzing and processing of the multi-component polynomial
signals. Firstly, the separation of mc-PPS component ben-
efits the searching of its component number 4 and the esti-
mation of amplitude parameter A,. Secondly, the instan-
taneous frequency estimation of the PPS component bene-
fits the searching of its phase polynomial parameter a, ,
and the estimation of the highest order M, .

3) Since the noise signals badly correlate with the
chirplet signals, the proposed method has good anti-noise
ability and is valid even though the signal-to-noise ratio of
multi-component Polynomial Phase Signals (mc-PPS) is
very low, which makes it suitable for the analysis of actual
engineering signals.
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