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Abstract — A control problem of a chain of integrator system with
measurement noise on feedback sensor is considered. We propose a
gain scaling controller for compensating measurement noise of feed-
back sensor. Because control systems operate via feedback sensor’s
signal, the measurement noise in sensor’ signal results in perfor-
mance degradation or even system failure. Therefore, control systems
often demand on compensating measurement noise. Our controller is
equipped with a compensator and gain-scaling factor in order to re-
duce the effect of measurement noise on feedback sensor.
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1 Introduction

Control systems operate via measurement data. It is
usually assumed that the measured signals are clean, i.e.,
there is no noise in feedback signals. If measurement noise
exists in sensor’s signal, it has influence on controller out-
put and then it may even generate whole system’s failure.
Therefore, we need to compensate measurement noise in
controller design™'. In Ref.[1], the problem of feed-
back sensor has been formulated and restricted measure-
ment noise has been compensated. In Ref.[3], measure-
ment noise has been compensated by using the Proportion-
al-Integral-Derivative(PID) controllers based on optimiza-
tion without analysis.

In this paper, we suppose three types of measurement
noise which are DC, AC, and DC and AC component.
These noises are added in controlling a chain of integrator
system. The measurement noise is compensated by using
gain-scaling controller with low pass filter.

2 Formulation

We consider a chain of integrator system given by
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where x=[x,,"*,x, ] €R" is the state, u€ R is the in-
put and y € R is the output. Ideally, a state feedback con-
troller can be implemented by

u = Kx, (2)
where K=1[k,,-**,k, ]. However, controller (2) is only
available in the ideal environment in the absence of mea-
surement noise. If the feedback information includes mea-
surement noise, the controller (2) becomes

U = Ky, (3)
Where X =x + s(t)ER" is measurement state and s(t) =
[s,(t),,s,(t)]"ER" is measurement noise. So bound-
ed measurement noise produces bounded states > and Sys-
tem regulation becomes difficult. Therefore, we propose
the following gain-scaling control law'® equipped with
compensator’7J for bounded measurement state.

u = K(e)y x bt 4)
where K(¢) = [k,[e"",-++,k,[e*],e >0, * denotes con-
volution operation. Here, we let « = x,., , then the
chain of integrator system (1) is transformed into

Xy = X2
iz = X3
E ()
Xyl = U
y =
and
v =K(e)y, (6)

where K(e) = [k /€', k,leland y = [y s
XnJrlJ 6 R”+1 .

3 Analysis

We apply Laplace transform to Eq. (5) in order to
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analyze the response of Eq. (5). Then, it becomes
SX](S) - I1<0) :XZ(S)
SX](S) - I1<0) :.1'3(5)
sX, (s) = z,(0) _X;+1( s)

5Xu+1(5> - xn+1(0) = ,,+1 (Xl s) + 51(5> +
BX()+ S e

k
:;(X,,(s) +S,(s)) +
k71+|

c X,,+1(5>
Y(s) =X, (s).
(7)
Thus, system’s output is
871+1 I(S> 8n+1 7(5)
¥ —_ > ~ + = + eee +
YO =5 a @m0 5 =0
71+l 11+l( ) /31
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(8)
where 6,1 (5),8,11,1(s), 5 0,:1,,41 (s) are given by
+ kn+ n kn n— k k
11+1( ) ” ! _Tls _?S b :2‘5_671+11
(8,11 (s )+ ,,.1
By () =S
k
(8, (s) + e—f)
pa(s) =S
k.
(8”+1(5) +7T1)
817)],71}1(5) :—§ = l.
9)

If 8,,,(s) becomes Hurwitz polynomial, we can use final
value theorem on Eq. (8). Then the factor of S, (s) which
has unknown pole remains® as

, b
- ‘» + - =
e T ) T e
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SZ(S) + i +

3.1 DC measurement noise

We suppose that the measurement noise is represent-

ed by DC component.
S1 (t) = o
SH (Z ) = a

SI(S> = QI/S
3Sz(s) : als an
5,(¢) =a, S,(s)=a,ls
After applying Eq. (11) to Eq. (10), using the final value

theorem the remaining terms is
(12&26 (13&3 62 a”k”€”71
—q — o — e — e — - (12)
: ky ky ky
Therefore, if s,(z),**,s,(z) are DC component, factor
of S, (s) converges to — a, regardless of size of € and the

effects of S,(s),*+,S, (s) are reduced by decreasing e .
3.2 AC measurement noise

We suppose that the measurement noise is represent-
ed by AC component (represented by sine function). Let

51(2), s, (1) become
SI(S) — 2[01(1)12
. s+ wi
51(t) = pysinw, t
©O2 @)

Sz(S> =

Sz(t) = pZSianZ:) 52 + (U% (13>
s, () = 0, SiNw,

Ony
Sn( >7 2+(1)

After applying Eq. (13) to Eq. (10), using the final value
theorem the remaining term is

Ot (P Loty Ly o
B_Hrl 1 + y71+1 1 tw
k _
{02 2(,6’,,”2(07 7,,+1z*)( 1 )+t (14)
Bzﬁl 2 T 7n+1 2 +
{011 (@ﬁl 2Wy n+l 71 )( 1 )
BZHI n + nt+l,n 2 +w 2
where
ﬁl+l,n = Re(€7z+| (S) |§'—j<u” s {ntl,n = Im<817+l (S) ‘5—ja1” )'

Therefore, increasing e and decreasing %,
reduce the effect of s,(z),-*s,(z) .

3.3 DC and AC measurement noise

,k, can

If measurement noise contains both DC and AC com-
ponents, s, (z),*,s,(z) become
51(t) = a; + pysinw,
5;(t) = a; + pysinw, t (15)
5,(t) = a, + p,sinw,t
After applying Eq. (15) to Eq. (10), using the final value
theorem the remaining terms is

A P:Z{Qll(ﬁnﬂlwl - n+|19)< _ 1 2)7
ﬁzm 1 T 7’3&1 1 S tw
ar ke szz(ﬂnﬂzwz - ”+175)( )+---—
k, Biﬂ 2t }’nﬂ 2 5’ 2
ake’ ‘0” ”(ﬁ”+l o Tutady( )
ky Britn & Vot 8+ i

(16)

Here, we can know that the change of size of € does not

reduce the both DC and AC effect at the same time.

However, only decreasing %, ,***,%, can reduce the effect
of both DC and AC component of s, (z),*+,s,(z) .

Remark: ¢,%,, -+, %, should be chosen according to
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the type of measurement noise. Here, we consider three
conditions of measurement noise.

1) (DC type): Factor of s,(z) converges to — a; re-
gardless of size of €,k, . However, we can reduce effect
of s,(¢),"++,s,(z) by decreasing e and increasing %, ,""*,
k.

2) (AC type): We can reduce the effect of s, (),
s, () by increasing e and decreasing &, ,***,k, .

3) (DC and AC type): We can reduce the effect of

51(¢),+,5,(¢) by decreasing of k,,*-,k, . However,
DC component of s, (z) is not affected.
4 Illustrative example
Consider a system given by
i‘ 1 — X
y = X

In Eq. (17), feedback signal’s measurement noise is set as
51(¢),s,(¢) . Applying Eq.(4), and letting by x5 = u ,
Eq. (17) is represented by Eq. (5). Here utilizing Eq. (7)
and (8), we can obtain the output given by

¥(o) =248 ) + ag%f‘;xz(m VR
ky
63()35()+8<)257(>
(18)
where 65(5),085,(s),85,(s),855(s) are given by
8;(s) = s —Esz —]%s —l%
e € e
2 /33 kZ
03.(s) =5 T T2 (19)
03.(s) = s —%

833 (S ) = l
Thus, when &5 (s) is Hurwitz polynomial, using the final
value theorem the remaining term is

b, N ,
W51(5>+783(S>€2SZ(5)' (20)

4.1 DC measurement noise

Measurement noise of feedback signal is assumed as
DC component in Eq. (20).
si(2) = a;__S,(s) = ay/s
() = ay S,(s) = a/2
Thus, since measurement noise has DC component, the
remaining term of Eq. (20) becomes

. k, _
hrrm( ( ) 35( ) (S)EZSZ(S)) -
alkl 0(7/@2 N (12k2€
5, |, 8 ()E RS

Therefore, if Sl( ), S, (s) are DC components, the effect
of S, (s) converges to — a, regardless of size of e,%, and

2D

(22)

s=0

the effect of S, (s) is reduced if € is very small value.

This simulation is performed with k, = — 6, k, =
—12,k; = —8,e=1. Fig.1 illustrates that &, is converged
as — a; whens, () = 1,5,(z) = 0.

2.0 — 1.0
% | SIS s
1.0\ :
_ N\ i o Ofuii
% = 4% :
0 \ 054/
1.0 -0
0 4 8§ 116 20 o 4 8 12 16 20
Time (s) Time (s)
(a) ®)

Fig. 1 Tllustrates that x; is converged as — a; whens; () = 1,5,(z) = 0:
(a) 1, (b) 22
Fig. 2 is simulation result when s, () = 0,s,(z) = 1.
It shows that r, is converged as — a, k,¢/k, and we know
that the effect of s5,(z) can be reduced if e is a very small

value.
1.5 1.0
0.5 \ ol .
= 4 X ' i
w05 -1.0} /
15)\ ‘
-2.0)
-2.5
0 4 g8 12 16 20 0 4 8 12 16 20
Time (s) Time (s)
@ (b)
Fig.2 Simulation result when s, (z) = 0,5,(z) = 1: (a) x; , (b) x,

4.2 AC measurement noise

Measurement noise of feedback signal is assumed as
AC component in Eq. (20).

01wy

. S () - 2

s.(2) i p,s%nwlg\, 1\ &+ w] (23)
5;(¢) = 02 SINw; - Pzwz
Sis) = 422,
Wy

After applying Eq. (23) to Eq. (20), using the final value
theorem the remaining terms is

k — 7318 1
{0131(,33,1601 23,15>( 2>+
€ ﬁ%l + 73 +CU1
(24)
{02/37(3)20)2* )2§)( )
ﬁz*%z «2 w

Therefore, ¢ is increased and %, is decreased in order to
reduce the effect of s,(z) . Also ¢ is increased and k, is
decreased in order to reduce the effect of s,(z) .

Fig.3 and Fig.4 are simulation results when s, (z) =
sin 3¢,5,(¢) = 0and s,(z) = 0,s,(z) = sin 3¢ , respec-
tively.

It shows that the effect of s, (z) and s, (z) can be re-
duced if ¢ is a large value.

4.3 DC and AC measurement noise

Measurement noise of feedback signal is assumed as
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DC and AC component in Eq. (20).

s;(2) = a, + o18inw; , (25)

SZ(t) = Q3 + {Ozsinwz.
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Fig.3 Simulation result when s, (z) = sin 3z,5,(¢z) = 0: (a) x; , (b)
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Fig.4 Simulation result when s, (z) = 0,5,(¢z) = sin 3¢ : (a) z; , (b)

N

After applying Eq. (25) to Eq. (20), using the final
value theorem the remaining term is

Pkl Biiwi — V3.8
- 5 ( )( ) —
“t /331"‘731 2"'(0% (26)
ar ke Pz/ﬁ(ﬂszwz 7329)( 1 ).
k] B‘;Z + + w%

Therefore, &, ,k, are decreased in order to reduce the
effect of both DC and AC measurement noise. However,
DC component of s, () is not reduced.

Fig.5 and Fig.6 are simulation results when s, (z) =
1+sin3¢,s,(z) =0and s, (z) =0,s,(z) =1+sin3z , re-

spectively.
1.5 i\ i 1.0 -
| = Y i
0.5 \\ ‘0 A f !\/\ A },&_\II\ /{j'._‘ [\/\ A
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Fig.5 Simulation result when s, (z) = 1 + sin 3¢,5,(¢z) = 0: (a) 2y ,
(b) 22

It shows that the effect of s,(z) and 5, () can be re-

duced except for DC component of s,(z) if k,,k, are
smallvalues.
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Fig.6 Simulation result when s;(¢) = 0,5,(¢z) = 1 +sin 3¢ : (a) x| ,

(b) x,

5 Conclusions

In this paper, we propose a gain-scaling controller to
compensate measurement noise of feedback sensor. Con-
troller equipped with compensator is introduced. Three
types of measurement noise as DC, AC, and DC and AC
component are assumed and system analysis using Laplace
transform is shown. Gain-scaling factor e should be de-
creased if measurement noise is DC component, e should
be increased if it is AC component, and the gain K should
be decreased if it is DC and AC component. However,
DC component of s, (z) cannot be compensated by using e
or K.
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