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Abstract — Foreground moving object detection is an important process
in various computer vision applications such as intelligent visual sur-
veillance, HCI, object-based video compression, etc. One of the most
successful moving object detection algorithms is based on Adaptive
Gaussian Mixture Model (AGMM ). Although AGMM-based object
detection shows very good performance with respect to object detection
accuracy, AGMM is very complex model requiring lots of floating-
point arithmetic so that it should pay for expensive computational
cost. Thus, direct implementation of the AGMM-based object detec-
tion for embedded DSPs without floating-point arithmetic HW support
cannot satisfy the real-time processing requirement. This paper pre-
sents a novel real-time implementation of adaptive Gaussian mixture
model-based moving object detection algorithm for fixed-point DSPs.
In the proposed implementation, in addition to changes of data types
into fixed-point ones, magnification of the Gaussian distribution tech-
nique is introduced so that the integer and fixed-point arithmetic can
be easily and consistently utilized instead of real number and floating-
point arithmetic in processing of AGMM algorithm. Experimental re-
sults shows that the proposed implementation have a high potential in
real-time applications.

Key words — background modeling ; real-time computing ; object de-
tection

Manuscript Number: 1674-8042(2010)02-0116-05

dio: 10.3969/]. issn. 1674-8042.2010.02.04

1 Introduction

Foreground moving object detection is an important
process in various computer vision applications such as in-
telligent visual surveillance, HCI, object-based video com-
pression, etc. . Intelligent visual surveillance requires
analyzing interesting objects’ activities. Interesting objects
are foreground moving objects different from background
objects in the background scene. It is now well known
that the performance of intelligent visual surveillance
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heavily depends on how precisely and rapidly interesting
objects are detected" . A popular approach to moving ob-
ject detection is the one based on background subtraction
where background is modeled and foreground pixels are
determined by matching pixels of an incoming video frame
against background model. Thus, accurate background
modeling is required for successful performance of the ob-
ject detection. However, scenes may be continuously
changing due to dynamic background objects (ex. swaying
tree’ branches, escalators, fountains), noises, variations
of illumination, and etc. so that more accurate but more
complex scene modeling like adaptive statistical scene
modeling have been proposed®>”'. Although these scene
modeling have produced much better performance with
respect to object detection rate, they need heavy computa-
tional burden. Since object detection stage has been inves-
tigated as the heaviest computing part among whole stages
in intelligent visual surveillance, real-time efficient imple-
mentation of these object detection algorithms adopting
statistical scene modeling are important, especially for
embedded systems which have limitation in computational
resources like CPU power and memory size.

DSPs are popularly adopted for implementing image
processing algorithms due to its superior ability in digital
signal processing, but many popularly adopted DSPs do
not support H/W floating-point ALU but floating-point
emulation S/W library in fixed-point ALU.

In this paper, we propose a novel real-time imple-
mentation of Adaptive Gaussian Mixture Model
(AGMM )-based moving object detection algorithm for
fixed-point DSPs like TI's DM642. Firstly, we implement
an improved version of adaptive Gaussian mixture model'”
but adopting just Y (luminance; gray-level intensity) ele-
ment instead of RGB color space. This approach saves
computation time a lot but it still satisfies sufficient pre-
ciseness within the permitted level. However it was found
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Fig.1 General work flow of visual surveillance system based on background subtraction

not sufficient to achieve required real-time processing for
DSPs without H/W floating-point ALU. For the required
real-time performance in DSPs with fixed-point ALU
only, we firstly introduce a magnifying Gaussian distribu-
tion technique utilizing the fact that when we magnify the
parameters of a Gaussian, all of characteristics of it are
still reserved in a new expanded space. Then, the fixed-
point integer representation can be easily utilized instead
of floating-point real number representation in implemen-
tation of AGMM. Although the range of integer numbers
is not wide and smooth as floating real numbers, the
tradeoff between speed and performance can be accepted
in this case. The experiment results show the proposed
implementation has a high potential in real-time applica-
tions.

The rest of the paper is organized as follows. Section
2 introduces processing stages including Object detection
of visual surveillance, and Adaptive Gaussian Mixture
Modeling, which are necessary for understanding the
works of this paper. Section 3 describes our proposed ap-
proach. There, we first show the common method to
transfer a computation from float to fixed point. After
that, we explain Gaussian scaling solution to zoom in
Gaussian shape to make it adapt to integer number. Ex-
periment results are discussed in section 4, and finally the
conclusion is presented in section 5.

2 Moving object detection and Adaptive
Gaussian Mixture Model

2.1 Object detection and scene modeling

Most of intelligent visual surveillance processing
based on background subtraction usually goes through the
following stages ' : scene modeling, foreground mask ex-
traction, foreground mask correction, blob segmentation
through connected component labeling, tracking, classifi-
cation, behavior analysis as shown in Fig. 1.

In these stages, foreground masks means the set of
all foreground pixels, and are represented as binary imag-
es where white (value 1) pixels are foreground pixels and
black (value 0) pixels are background pixels. Foreground
pixels are extracted from the incoming current image
frame through matching it with the scene model”’. The
successful workings of the whole processing rely on the
correct segmentation of moving objects which depends on

the scene model. Moreover, some research showed that
scene modeling is one of the most demanding computation
stage in this whole process .

Fig.2 shows example images related with scene mod-
eling and foreground extraction steps.

(@) (®) (©)
Fig.2 Images related to scene modeling and foreground extraction steps:

(a) Original frame image, (b) Background image, (¢) Foreground binary
image

2.2 Adaptive Gaussian Mixture Model for scene
modeling

The AGMM can adapt to slow illumination changes,
repetitive motions from clutter background, etc. In Ref.
[3] Stauffer and Grimson model the RGB value histories
of each pixels in the scene by a mixture of K Gaussian dis-
tributions, while, in our paper, we use the K Gaussian
distributions to model for just the Y element in YUV for-
mat. Our implementation relies on the improvement idea
for GMM of Z. Zivkovic?'. Each pixel in the scene is
modeled by a mixture of Gaussian distributions. The
probability that a certain pixel has a gray-level value of
xy at time N is as

K
plan) = D wplansy o), (1)
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where ' is the weighting parameter of the ;" Gaussian
component at time N . p(ay;z o)) represents the
Gaussian distribution with a mean ' and a variance (¢ )’

of ;" component at time N , that’s
1
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The K distributions are ordered based on the fitness value
w/o and the first B distributions are used as a model of
the background of the scene where B is estimated like

Eq.(3).
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The threshold T is the minimum fraction of the
background model. Now, background subtraction is per-
formed by marking a foreground pixel any pixel that is
more than 2.5 standard deviations away from any of the
B distributions.

Parameter estimating of the Gaussian mixture model
is done through online EM algorithms using expected suf-
ficient statistics update equations in the beginning and
then using L-recent window version when the first L sam-
ples are processed. The expected sufficient statistics up-
date equations provide a good estimate at the beginning
before all L samples can be collected. This initial estimate
improves the accuracy of the estimate and also the perfor-
mance of the tracker allowing fast convergence on a stable
background model. The L-recent window update
equations gives priority over recent data therefore the
tracker can adapt to changes in the environment. The pa-
rameter estimation rule in the beginning by expected suffi-
cient statistics is given in Eq. (4).
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) 1, @, matches Gaussian component;
P(CU/z ‘ 11\'+1) =

0, otherwise.

While the parameter estimation rules by L-recent window
version is given in Eq. (5). And in context of L-recent
window, in Eq. (5) the Gaussian component that matches
with current pixel is updated.
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3 The proposed real-time implementation
of AGMM-based object detection algo-
rithm

Although using one color channel Y (luminance) in-
stead of 3 RGB color channels saved processing time in
AGMM implementation, most DSPs without floating-
point HW ALU still lack more CPU computing power to
process the implementation of AGMM.-based moving ob-
ject detection algorithm in the required real-time. The
main reason is that the AGMM algorithm heavily employs

floating-point arithmetic which is usually done by very
costly emulation routines in DSPs without H/W floating-
point support. The usual remedy to this is to change float-
ing-point arithmetic into fixed-point arithmetic with some
sacrifice in numerical error. In this paper, in addition to
changes of data types into fixed-point ones, we magnify
the Gaussian distribution so that the integer numbers and
fixed-point arithmetic can be easily utilized instead of real
numbers and floating-point arithmetic in processing of
AGMM algorithm.

3.1 Binary scaling and Q-format

Binary scaling is a computer programming technique
used mainly by embedded C, DSP and assembler pro-
grammers to perform a pseudo floating point using integer
arithmetic. It is both faster and more accurate than di-
rectly using floating point instructions. However care
must be taken not to cause an overflow. A position for
the virtual binary point is taken, and then subsequent
arithmetic operations determine the resultants binary
point. Binary points obey the mathematical laws of expo-
nentiation.

To give an example, a common way to use integer
math to simulate floating point is to multiply the coeffi-
cients by 65 536. This will place the binary point at B16.
For instance to represent 1.2 and 5.6 floating point real
numbers as B16 one multiplies them by 2'° giving 78 643
and 367 001. The multiplying of these together gives 28
862 059 643. To convert it back to B16, divide it by 2.
This gives 440400B16, which when converted back to a
floating point number (by dividing again by 2'°, but hold-
ing the result as floating point) gives 6.719 99. The cor-
rect floating point result is 6.72.

Another common method used to convert from float-
ing-point number to integer representation is Q-format.
Q-format is a fixed-point number representation format
where the number of fractional bits (and optionally the
number of integer bits) is specified. For example, a Q15
number has 15 fractional bits; a Ql. 14 number has 1 inte-
ger bit and 14 fsactional bits.

Both of methods were performed by shifting a float-
ing number to a new suitable range in integer space. They
got the similar problems about overflow and bias during
processing. One needs to care the number of shift bit or
the range that they choose to present floating point. We
will extract this idea to improve GMM by presenting it in
integer space.

3.2 Magnifying Gaussian model

The AGMM algorithm is based on a mixture of
Gaussian distributions. Characteristics of Gaussian distri-
bution are determined by its mean and variance (standard
deviation). Thus, when value x is scaled, then scaling the
mean and standard deviation in the same scale will keep
the characteristics of Gaussian distribution in the same
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way. This fact can be seen easily as follows.
Let’s scale ¢« and ¢ by R when x is scaled by R .
Then, the Gaussian distribution (2) will be changed as

1 ]
Vg R 2Ry R R
] |

1 I N
=1y AN AR

From the above analysis, we determine that it is possible
to extend scope of v,z , and o) , by magnifying the
mean and variance but still with the properties of Gaus-
sian distribution kept.

We want to map the Gaussians from floating-point
real number domain to fixed-point integer representation
domain by scaling technique that have similar idea as bi-
nary scaling mentioned above. Fig. 3 illustrates to the
mapping model.
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Fig.3 Gaussian scaling model

In our implementation, the data space of intensity
[0,255] will be mapped to [0,255<4]. In this case, the
distance between xy and xy_; ,d = xy — xn-; should be-
long to [0,255<4]. Standard distance which must be cal-
culated to compare to variance, D = d * d stay in range
[0,(255 % 255)<<8]. We chose 4 as basic shifting bits to
scale all main parameters of Gaussian for trade off be-
tween overflow and bias. The others parameter will be
calculated as

o = o <8,
w:, = w << 10.

The thresholds and extra other parameters will be scaled
by a suitable shifting to make sure an unchanged model.
Moreover, they must be in balance of safeness and pre-
ciseness with a very strict filter.

4 Experimental results

4.1 Comparison between the proposed implement-
ation and the conventional floating-point im-
plementation with respect to preciseness

We compare our fixed-point AGMM implementation
and conventional floating-point with respect to blob cor-
rection ability and background image. Fig. 4 shows the
result which shows the proposed implementation produces
almost similar output images as the conventional imple-
mentation does.

Fig.4 (a) Frames 340, 630, 940, 1540 of Pets 2001 test video, (b) The
equivelent background and foreground mask images by the proposed im-
plemenation, (c¢) background and foreground mask images by the conven-
tional implementation. Foreground mask in Fig. 4(b) and 4(c) was ob-
tained using CLNF method that is produced in our previous works*’ . Al-
though the value range of integer number is lower than floating domain,
the result is still in permitted bias

4.2 Comparison about processing time

In order to compare the computational cost between
the conventional implementation and the proposed imple-
mentation, we did two experiments in both environments,
desktop computer with a 3 GHz Pentium 4 Core of 3 GHz
and 3 GB main memory and DSP TI DM642 evaluation
board.

First experiment calculates the processing time for
background modeling in one frame, Fig. 4(a) in both the
conventional and our upgrading version. And the second
experiment calculates the processing time for continuous
background modeling in movies. The resolution of each
image frame is 320 X240 and sizes of moviel and movie2
are 4.67 MB (221 frames) and 245 MB (1 117 frames).
In all testing, we just extract the time of background
modeling from whole processing. Table 1 shows the re-
sults for the first and second experiment, respectively in
desktop computer.

Tab.1 Comparison of the processing time between the conventional Gaus-
sian Mixture Model (GMM) and the proposed fixed point version for one
frame of Fig.11(a) and two movies in PC

Frame(s) Movie 1(s) Movie 2(s)
Conventional GMM  0.004 226 1.247 776 5.694 340
Our GMM 0.001 482 0.504 759 2.312 254

The results of Tab. 1 certainly show that the prop-
osed implementation is faster than the conventional im-
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plementation even they was tested in powerful floating
point CPU. At the experiment in a fixed-point DSP
TMS320DM642 (Frequency: 720 MHz) that is shown in
Tab.2, the speed of the proposed one was found to be
much faster than conventional one.

Tab.2 Comparison of the processing time between the conventional Gaus-
sian Mixture Model (GMM) and the proposed fixed point version for one
frame and two movies in DSP

Frame(s) Movie 1(s) Movie 2(s)
Conventional GMM 0.009 247 7 2.052 994 5 9.630 296 9
Our GMM 0.001 132 7 0.314 259 6 1.263 025 7

5 Conclusion

In this paper, we proposed a novel real-time imple-
mentation of AGMM-based object detection algorithm for
fixed-point DSPs. In addition to utilizing gray-level data
as opposed to RGB color data in the conventional AGMM
implementation and changes of data structures and float-
ing-point arithmetic operations, magnification of Gaus-
sian model through parameter scaling is introduced which
enables fixed-point arithmetic operations instead of float-
ingpoint arithmetic operations so that it saves a lot of
computational time. The experiment results show the ef-
fectiveness of the proposed implementation.
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