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Abstract — Recently, Coordinate Measuring Machines (CMMs) are
widely used to measure roundness errors. Roundness is calculated
from a large number of points collected from the profiles of the parts.
According to the Guide to the Expression of Uncertainty in Measure-
ment (GUM), all measurement results must have a stated uncertainty
associated the them. However, no CMMs give the uncertainty value
of the roundness, because no suitable measurement uncertainty calcu-
lation procedure exists. In the case of roundness measurement in co-
ordinate metrology, this paper suggests the algorithms for the calcula-
tion of the measurement uncertainty of the roundness deviation based
on the two mainly used association criteria, LSC and MZC. The cal-
culation of the sensitivity coefficients for the uncertainty calculation
can be done by automatic differentiation, in order to avoid introducing
additional errors by the traditional difference quotient approxima-
tions. The proposed methods are exact and need input data only as
the measured coordinates of the data points and their associated un-
certainties.
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1 Introduction

All the international, and national standards existing
today leave it open to the designer which method he would
like to use for the assessment of roundness in the technical
drawings. The four possibilities given by ISO 1101:2004""
or the Chinese standard GB/T 7234-2004"' are the Least
Squares Circle (LSC), the Minimum Circumscribed Circle
(MCC), the Maximum Inscribed Circle (MIC), and the
Minimum Zone Circle(MZC).

Although a theorem of Chebyshev makes sure that
the MZC always yields the smallest value for the round-
ness deviation, all the other methods are still in use. This
is either due to the fact, that the calculation of the round-

* Received: 2010-06-22

ness deviation is not strictly based on the MZC by a rule or
standard (although strongly recommended by ISO and
ANSI), or that no suitable algorithms for the calculation
of the MZC are available for the user. Sometimes func-
tional needs, like the mating of the parts, might also force
designers to use one of the other methods.

According to the Guide to the Expression of Uncer-
tainty in Measurement (GUM)"', all the measurement re-
sults must have a stated uncertainty associated with them.
But in most cases of roundness measurement, either no
uncertainty value is given, or the calculation is not based
on the model of the respective association criterion for the
geometrical feature, because no suitable measurement un-
certainty calculation procedure exists. This is especially
true of the case of the MZC.

For the case of roundness measurement in coordinate
metrology, this paper suggests the algorithms for the cal-
culation of the measurement uncertainty of the roundness
deviation based on the two mainly used association crite-
ria, LSC and MZC. In this connection, the calculation of
the sensitivity coefficients for the uncertainty calculation
shall be done by automatic differentiation, in order to
avoid introducing additional errors by the traditional dif-
ference quotient approximations. The proposed methods
are exact and need as input data only as the measured co-
ordinates of the data points and their associated uncertain-
ties.

2 Definition and calculation of roundness

The following definition of roundness is given in the
normative Annex B of the international standard ISO
1101:2004™"

The roundness of a single toleranced feature is
deemed to be correct when the feature is confined between
two concentric circles so that the difference in radii is
equal to or less than the value of the specified tolerance.
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The locations of the centres of these circles and the values
of their radii shall be chosen so that the difference in radii
between the two concentric circles is the least possible val-
ue.

Fig.1 demonstrates, what the ISO standard requires.
The annulus A, on the right side with the width Ar, and
the centre G, is the smallest one including all the measured
points. Thus its width is identical to the roundness, which
is denoted in the main body of the standard by RON, .

Fig.1 Definition of roundness according to ISO 1101:2004!"]

The ISO definition clearly supports the minimum
zone circle (MZC) association criterion. However, in
practice the least squares circle (LSC) association criterion
is also used quite often today and thus can not be ignored
completely.

For the LSC criterion the roundness is defined as the
difference of the maximum and the minimum distances of
the measured points from the centre of the least squares
circle, i. e. if RON, denotes the roundness, then

RON, =

(xl - 10)2 - (yl _yo)z -

<xz_l'0)2_(y2_yo)2~ (1)
where (z,,y,) and (x,,3, ) are the coordinates of the two
measured points having the largest and the smallest dis-
tances from the centre of the L.SC with the coordinates
(x9,9) (if it should happen, more than one point of one
or other kind. We may select just one of them arbitrari-
ly). However, the centre coordinates (x,,y,) are depen-
dent of the coordinates of all the measured points.

At first sight it seems not very promising for the un-
certainty calculation of the roundness for the LSC criteri-
on, but applying the method proposed in Ref. [4], the
uncertainty matrix of the centre coordinates can be easily
obtained, which can subsequently be used to deliver the
uncertainties and covariances of these two parameters to
the uncertainty of the roundness itself, as described in de-
tail in the GUM™.

In order to detrmine the necessary sensitivity coeffi-
cients, the calculation of the partial derivatives of
equation (1) with respect to the parameters (x,,v,) , as
well as the coordinates (x,,y,) and (x,,y,) respectively,
is required. This task can most suitably be performed by a
computer program by using automatic differentiation not
only for the LSC association* , but also for the uncertain-
ty calculation of the roundness. Thus the uncertainty cal-

culation for the roundness in the case of the LSC associa-
tion criterion can be considered to be solved.

Now turn to the MZC association criterion. For lack
of space, how the centre and the two radii for the MZC
can be obtained, because the problem is much more com-
plex than the LSC case. However, the optimization theory
helps derive conditions, which must be obeyed by any val-
id solutions.

The MZC association is one of a group of optimiza-
tion problems, which are summarized under the term Che-
byshev approximation. These optimization problems are
non-linear and as such do not ensure a unique solution,
and even if they do, this solution is not necessarily a glo-
bal optimum, but can be a local one. However, if the de-
viation of the measured points is not too big, i. e. in this
case if the roundness is small, as it is usually the case in
practice, we can be more optimistic a unique solution may
be expected, which does not deviate very much from the
global optimum, if it deviates at all.

y

Chebyshev circle

Fig.2 ‘Typical solution of a MZC approximation

If degeneration can be ignored, which under practi-
cal circumstances is mostly the case, the problem has a
unique solution, which is controlled by four so-called criti-
cal points. There are exactly two critical points on the
outer circle and two critical points on the inner circle of
the minimum zone annulus, and the cords connecting the
projections of the respective points of each of the pairs
onto the outer circle do intersect™ . Fig.2 shows a typical
solution of a MZC approximation.

As can be shown by the theory of computational ge-
ometry, the centre of the two concentric circles is inside
of the convex hull of the measured data points at an inter-
section of a nearest Voronoi edge and a farthest Voronoi
edge. This fact is convenient for the application of a fast
and reliable exhaustive search algorithm, after the two
Voronoi diagrams have been constructed. This does not
only guarantee the termination of the algorithm, which,
otherwise, is not always easy to prove, but also helps to
check for the uniqueness of the solution. A Voronoi edge
is defined to be a line segment separating two adjacent re-
gions of a Voronoi diagram. Each point on a Voronoi
edge is equidistant from two sites associated with these re-
gions. The nearest point Voronoi region associated with a
certain point is the set of all the points in the plane that
are closer to that particular point than to any other point,
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while the farthest Voronoi region associated with a certain
point is the set of points in the plane that are farther from
that particular point than from any other point. For more
details about Voronoi diagrams, refer to any suitable text-
books on computational geometry, for example™® .

After the centre coordinates and the critical points
have been obtained, equation (1) is again applied to cal-
culate the roundness, where (., , v, ) now denotes the cen-
tre coordinates of the MZC and (, ,y,) and (x,,y,), re-
spectively, the coordinates of one of the critical points on
the inner and the outer circle at a time. In order to calcu-
late the associated uncertainty, we need the uncertainty
matrix of the centre coordinates, but there is no formula
which can be used for this purpose, because the exhaustive
search is not an algebraic algorithm. To solve this prob-
lem, the centre coordinates are recalculated as the coordi-
nates of the intersection point of the two perpendicular bi-
sectors of the line segments, which connect the two points
of each pair of the critical points on the inner and the out-
er circle of the minimum zone annulus, respectively. This
obtains a function depending on all the four critical points
and thus allows an uncertainty calculation for the centre
coordinates by applying the usual rules as given in the
GUM. The task to calculate the necessary partial deriva-
tives should be again most suitably performed by a com-
puter program using automatic differentiation.

3 Automatic differentiation

The preceding section has shown that the partial de-
rivatives are essential for the calculation of the measure-
ment uncertainty. Two methods are frequently used today
to figure out the partial derivatives of given functions nu-
merically, firstly to derive the necessary formulas analyti-
cally by hand or by using a suitable computerized algebriic
system, and subsequently to code the expressions in a
computer program, and secondly to apply a finite differ-
ence approximation. However, there is another technique
available namely, automatic differentiation (sometimes al-
so called algorithmic differentiation). Unfortunately, this
approach is not widely known within the engineering
community, although it is possible to figure out the partial
derivatives of the arbitrary order of functions efficiently
and accurately. Thus this method is well suited to calculate
the necessary partial derivatives.

The idea behind the automatic differentiation is, that
differentiation, in principle, as is well known from calcu-
lus, is a rule based procedure, which thus can easily be
programmed to be done by a computer. The computer
program parses a given expression and uses term-rewriting
methods to apply successively the rules of differentiation
to each sub-term resulting from the parsing process. The
details of the underlying ideas to construct suitable algo-
rithms can, for example, be found in Ref.[7] or [8].

The code, representing the formula to be differenti-

ated, is automatically generated from the input expression
by a suitable parsing algorithm and usually stored in the
computer memory as an Abstract Syntax Tree (AST). The
derivative of the code is subsequently obtained by simply
applying the rules given in table 1 step by step, using a
suitable pattern matching algorithm, while traversing the
AST depth first from, left to right. The resulting code is
generally much longer than the original one and contains
superfluous expressions. Thus, a subsequent coding opti-
mization process is needed, in order to simplify the code.
The optimization algorithm uses the well known algebraic
rules and is based on the techniques, which have been de-
veloped for the optimizing compilers.

Tab.1 Differentiation rules
rule  expression derivative comment
1 a=c da =0 ¢ is a constant
x is the dependent vari-
2 a=ux da =1 able
3 a=u+tv da = du + dv
4 C=u-o da = du — do w and v are expressions,
B _ depending on tie vari-
5 a=u-v da = wudv + vdu able +
6 a=ulv da = (du — adv)/v
fis an arbitrary func-
7 a= f(u) da = du + f(u) tion, /" is the derivative
of f
/\
sqrt sqrt

* * * *
/N /N /N /N /N /N /N /N
X1 Xo X1 Xo V) Vo Yy Vo Xy X X, Xo YV, Vo Vo Y

Fig.3 Abstract syntax tree (AST) for the formula

If such an algorithm is applied to the roundness for-
mula as given in equation (1), the results summarized in
Fig.3 and Tab.2 are obtained.

The code list resulting from a suitable parsing process
is given in the left column. This code block calculates the

RON,

(2, — 20)" — (3, — y,)*, as can easily be verified by
successively reinserting the temporary expressions. Inter-
nally the code list is stored as an abstract syntax tree
(AST), as is depicted in Fig.3, which can automatically
be generated by a recursive descending parser from the in-
put expression representing this formula.

The middle column of Tab.2 shows the derivative of
the code list, as obtained by a simple application of the
rules given in table 1 to the first column of Tab.2 line by
line. The computer program is doing just this by pattern
matching, while traversing the AST in preorder, i. e.

distance (2y =) = (i —w) -
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depth first, from left to right.
Tab.2 Example for the partial differentiation of the code list with respect to
the parameter x, for the roundness formula RON, =

(Tl - X0 )2 - (yl B 3’())2 - (fz X0 )2 - (yz B yo)z

code list derivative .Of after optimization
the code list
t, = a — 2 de =0-1
hy =t *dt
ty =t * t hy = t1* dty
diy, = hy +hy
3 = 51~ o dz; =0-0
hy = t3* dt;
ty = 13 %13 hy = t3* di3
diy = hy + hy
ts = 1) — 1y dts =dt, —diy
B hs =dts/te
to =sart( zs) dtg = hs/2 ditg = 11/t
t7 = a7 — X0 dz; =0-1
he = t7% dity
tg = 17 %17 hy = t7% dity
ditg = hg + hy
to = y2 = Yo dty =0-0
hg = tg* dig
tiy = tg * L9 hg = tg* dig
dty = hg + ho
tn =13 ~tip dey =ditg —diy
tp =sart( 1y ) hy =dty/t,
dip = hyl2 dtp = t7/tp
RON, = tg — tp dRON, =dts —dtp | dRON, =dts —dip

As is seen, the resulting code list is much longer and
contains superfluous code like dz;, =0—1 or dzgy =0—0.
This is generally the case after the differentiation rules
have been applied. Depending on the input expression,
the derivative of the code list is usually longer than the
original code list by a factor of three to ten. Thus a subse-
quent optimization process is needed to simplify the code
resulting from the differentiation algorithm. The optimi-
zation algorithm is based on the techniques, which have
been developed for the optimizing compilers and uses the
well known algebraic rules, as e. g commutativity and
associativity, for algebraic simplification, as well as tech-
niques like constant propagation, constant folding, com-
mon code elimination, and dead code elimination. The re-
sult of the application of the optimization process for the
roundness formula is shown in Column three of Tab.2. In
comparison with Column 2, this code is much more sim-

plified, since it uses sub-expressions of the first column.
This strategy is strongly recommended, because the origi-
nal code needs to be calculated anyway, in order to obtain
the value of the objective function.

By applying of the outlined methods, a computer
program can be written, which automatically generates
another program, which in turn is able to solve a particu-
lar uncertainty calculation problem. The input for the
program generator is just the roundness function of the
problem under consideration and the choice of a particular
solving method to be used. The generated program is sub-
sequently compiled as usual and linked with a library pro-
viding the necessary supporting functions, which imple-
ment the required optimization strategies.

4 Conclusion

It has been shown how automatic differentiation can
be applied to the uncertainty calculation of roundness for
the two practically important cases of the Least Squares
Circle (LSC) and the Minimum Zone Circle (MZC) asso-
ciation criterion. The proposed methods avoid additional
errors, which otherwise are caused by the traditionally
used difference quotient approximation, are exact and
need input data only as the measured coordinates of the
data points and their associated uncertainties.
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