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Abstract — The evolution of chaotic state of Lorenz system on the fa-
miliar parameter space orbit is analyzed. Based on the principle of
chaos suppression with nonresonant parametric drive, the model of
detecting weak periodic signals in strong noise is built. According to
the parametric equivalent relationship obtained using averaging meth-
od and renormalization method, the critical values of detection pa-
rameters are determined, which lead to a sudden change of system
dynamical behavior from periodic orbit to stable equilibrium point.
Simulation results show that weak periodic signals in strong noise can
be detected accurately with the proposed system. The method can ob-
tain accurate range of parameter threshold through theoretical analys-
is, and the detection criterion is rather simple, which is more conve-
nient for automatic detection.
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1 Introduction

Last decade, there are mainly two directions of de-
tecting weak signals in the application of nonlinear dy-
namics: Chaos and Stochastic Resonance. By contrast,
however, the approaches based on the Chaos have partic-
ular advantages. There is no request on background noise
or the length of measured data. In the recent years, dom-
estic scholars achieved remarkable progress on weak sig-
nals detection by applying nonlinear dynamics chaotic
theory ™. Firstly, detected signals through the forcing
driven bifurcation of Duffing-Holmes system, and then
proposed modified Duffing-Holmes system, which can
reach the lower Signal-Noise-Radio(SNR) work low lim-
it. In a word, existing methods are mainly based on chaos
suppression theory of nonautonomous chaotic system.

Resently, some disadvantages of the detection meth-
od based on nonautonomous Duffing-like system were un-
covered: results affected obviously by critical value, judg-
ing criteria according to the mutation of phase diagram is
not effective when the intensity of background noise is not
stationary. Consequently, it is necessary to study new cha-
otic detection system.

Accordingly, some autonomous systems, such as
Lorenz system, have been researched deeply. Some new
progresses about controlling and application of chaos are
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gotten ', and global dynamics behavior characteristics

are verified rigorously® . In which chaos suppression in
the nonresonant parametric drive is a new way for signal
detection™’ .

The paper shows the chaotic evolution of Lorenz sys-
tem, builds the model of detecting weak periodic signals
based on chaos suppression in the nonresonant parametric
drive, and performs direct numerical simulations to verify
the theory.

2 The evolution of chaotic state of Lorenz
system

Lorenz system is a classical autonomous chaotic sys-
tem which global dynamics behavior has been analyzed
thoroughly and proved strictly. Its system equations are

x=0o(y—x),
Ty = -y az, (1)
L z = xy — bz.
With parameters:
o = 10,6 = 8/3,r € [24.74,2 000],

set initial point ( x¢,y,,%,) = (1,1,1) , steph =0.001,
and create attractor by solving system (1). We computed
20 000 times and discard first 9 000 times to make sure the
system converged to the attractor. Fig.1 shows a group of
representative result.

Observe the changes of phase space: As r declines,
we would see successively the limit cycle (See Fig. 1(a)),
period-doubling bifurcation (See Fig. 1(b)), Lorenz-like
attractors(See Fig. 1(c)). And the process repeats three ti-
mes” .

when » <24.74 system (1) has three equilibrium
points

S, = (0,0,0),
S.= (VBT =D, £V =D~ 1).

When 0 < » <1, system is stable on the origin; 1 <
r < 24.74, the origin turns to unstable, the other two
equilibrium points are stable; » >24.74 , system is chaotic
or periodical state® .

Analyzed particularly » = 1, forked bifurcation ap-
peared at the origin; » > 1, the origin turns to unstable
and becomes saddlefocus point of one-dimensional unsta-
ble manifold; 1< » < r,, the other two equilibrium points
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Fig.1 Attractors of Lorenz system

turn to saddlefocus points of two-dimensional unstable
manifold, Hopf bifurcation occurs, eigenvalues are
A=—(+b+1,A=+iV25(c+1D/(c-b-1),
system turns into chaos’'. Where
r=0clc+b+3))(c—b-1)=24.74. (2)

r =14.546 2 is a homoclinic branch point. When
1<r=.14.546 2, unstable manifold tends spirally to equi-
librium point S + or S — on the same side, the spiral turns
to bigger as r increasing; when » >14. 546 2, unstable
manifold tends spirally to equilibrium point S + or S — on
the other side.

The evolution of system including: the conversions
between the attractor and limit cycle, the attractor and
periodic bifurcation, the attractor and stable equilibrium
points, limit cycle and periodic bifurcation. When » = 1
—r < 1, system changed from bifurcation to stable at
the origin. Equilibrium point and » would not vary as oth-
er parameters changing. Therefore, we built detection
model according to the state conversion.

3 Detecting model based on chaos suppres-
sion in the nonresonant parametric drive

In Ref.[4], chaos suppression of Lorenz system was
carried out by using periodic signal which frequency is
much higher than the system characteristic frequency as
parameter drive. System tended to periodic state or stable
at an equilibrium point, and the results were verified with
an analog electronic circuit.

The frequency of Lorenz system can not analytically
express the external drive without apparent time and fre-
quency, so we carried out open-loop control of chaos sup-
pression with nonresonant parametric drive.

Assumed that the detected signals include weak peri-
odic component with frequency w , and w was much big-
ger than system characteristic frequency w,, we designed
detection systemm

J x=o(y—a),
1 y= i1+ keos(at + @) + aFy, [u() e =y — a2,  (3)
T =ay— bz.

Where ¢ = 105 b = 8/3; r is adjustable, kcos( wt +

¢ ) is periodic driven signal which controls system state,

adjustable phase ¢ can match the phase of driven and de-
tected signals.

Input u(z) = s(¢)+n(z) , where s(z) is weak peri-
odic signal, n(¢) is noise, F,, is bandpass filter function,
and y is output of detection system. Consideringa = 0,
i.e. with no input, integrated the system variables and
neglected the higher orders element by using averaging
method, we obtained the renormalization system
J( 3:51 - U(yl —x),

3V T Tad T T X% 4)
l 2y = a1y — bz
where

rok’
Veff = 7’(1 - ﬁ)’ (5)

Relations (1) and (3) of two systems have same dy-
namical character for r4 = r , That is for r; < 1, the
Jacobi Matrix eigenvalues A of Eq. (3) at the origin are
three negative real number, and for » > 1 , an eigenval-
ue turning to positive, bifurcation occurs. Because the or-
igin of Eq. (3) is global stable equilibrium point, 4 should
agree the condition

E>k = (o/r)vV2(r-1)]o, (6)

The output of detection system converging to zero for
k > k. , stable limit cycle periodic for £ is a slightly less
than k. . We set £ = k. , what the amplitude of internal
drive of system (3), and adjust the coefficient a to control
the power of input. The output would converge to zero
from periodic state as long as any weak periodic signals
s(2) exist.

Considering Eq. (6), we analyzed the effect of £ on
eigenvalues A for r = 1, and obtained the Jacobi Matrix

at the origin. Three eigenvalues are A, =0, A, =— b,2;
=—(s+1).2,,A, are constants or unrelated to % , so
_ d As _d (‘ c—1)
C dk S dk ™

T =1

From Eq. (6) and Eq. (7), we obtained

200 | o

The absolute value of p is bigger, and the change of
A is more remarkable as the change of . w. So a bigger
and a less w (for w > w,) can make the system output
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Fig.2 System output: (a) When there is no signal, (b) When input is white noise, (c) when input is weak perodic signal and white noise

more sensitive to external signals. Because of the renor-
malization, the estimate of critical parameter £, would be
slightly bigger than practical value, so it needs to be mod-
ified through simulation. Time scale transformation ¢ =
w, * t;/wshould be taken to Eq. (3) if detecting signals
which frequency w, # w .

4 Numerical simulation

According to the analysis above, there are three
model parameters need to be determined w,r,%k, . From
Eq. (6) we see that three parameters restrict each other,
which should be determined simultaneously. The frequen-
cy (which is the mean-time derivative of the phase) of the
Lorenz system can be defined as™*

wy = }E{}O ZTEN'IS 1 ) 9)
where N(T) is the number of turns performed in T .

In Eq. (3), the characteristic frequency of the system
is w,~=8.33 rad/s for » =28. After simulation and com-
prehensive consideration, we obtained k£, = 2. 408 in
Eq. (3), for determining » =168, w =70 rad/s, and then
determined the correction £, =2.751 through system sim-
ulation. Fig.2 shows that when system input is u(z) =0,
the output y take on critical periodic state for & = k., ¢ =
0,a = 1, the central frequency of bandpass filter w , and
the gain approximate 5 dB.

When input signals are white noise with power P =
0.04 W, random fluctuation appeared in the wave envel-
op of system output (Fig.2(b)). For s(¢) = pcos( wt ),
system output changed suddenly as z increased from 0.
When » =0.002 V, output converges rapidly to zero
(Fig.2(c)). Therefore we can make judging criteria on
weak periodic signals exist or not to calculate the mean
power of output after specific time.

We computed SNR low limit SNR= —26 dB, which
would be lower if system parameters are optimized ac-
cording to the analysis result of Eq.(8).

5 Conclusion

1) The model of weak signals detection under strong
noise based on Lorenz system was built. The system out-
put would change suddenly from periodic to zero as long
as system input include weak periodic signals. The theo-
retical analysis has been found to agree well with the re-
sults of numerical simulations.

2) There is room for optimizations on reducing SNR
work low limit, advancing detecting ability through
choosing more appropriate parameters. Some potential
problems of practice signals detection should be analyzed
thoroughly, such as the relationship of phase information
between model and signals.
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