Vol.2 No. 1, March 2011

Journal of Measurement Science and Instrumentation

Sum No. 5

Control of Multiple PWM Servos by a Single Programmable Timer

Michael Collier(fH#), Jin-Wei SUN(FMEF)
(College of Information and Electrical Engineering, Shandong University of Science & Technology , Qingdao 266510, China)

Abstract — An algorithm for control of several servo motors by a mi-
crocontroller is presented. The limited number of programmable tim-
ers on the majority of microcontrollers presents a problem for multiple
generation of timing pulses. Two software approaches are discussed in
the paper and experimental results given for operation of a set of
small servos using a single timer.

Key words — PWM;; servo; multiple; timer
Manuscript Number: 1674-8042(2011)01-0060-04
dio: 10.3969/j.issn. 1674-8042.2011.01.15

1 Introduction

The control of small servo motors for rotational posi-
tioning is being increasingly implemented by means of mi-
crocontrollers. Such a servo is most commonly controlled
by a single wire carrying a Pulse-Width-Modulation
(PWM) signal.

In cases where it is desired to control several servos
from one microcontroller, the hardware interfacing is ex-
tremely simple since each motor can be connected to a
separate port pin. However, the software production of
the necessary variable pulse widths demands the use of the
programmable timers on the microcontroller. These being
limited in number (usually to two or three) the control of
multiple servos becomes more complicated. This paper de-
scribes an algorithm to meet this situation.

The need for this development has arisen as part of a
larger project to implement fuzzy-logic control of sailing
vessels, and the development work is being undertaken on
small-scale model sailing yachts to facilitate experimenta-
tion in the testing of the fuzzy algorithms. Among the
requirements of such a system is the need to mechanically
control several facilities on the boat from a single micro-
controller. These operations concern the manipulation of
the sails and rudder of the boat in response to changing
wind conditions, and are derived from measurements of
compass heading and relative wind direction.

2 PWM servo principles

Small servo motors usually have a three-wire connec-

* Received: 2010-08-11
Corresponding author: Michael Collier(collier1942@yahoo. co. uk)

tion, comprising positive supply, ground and signal pins.
Position control is achieved by variation of pulse lengths
over an active range. A typical servo, the S3003 from Fu-
taba, used widely for model control applications is shown
in Fig. 1. This motor'" has been chosen for the fuzzy logic
control project.

Fig. 1

Futaba S3003 servo motor

The arrangement is particularly suitable for micro-
controller operation, since only one digital output is
required and the signal voltage comprises accurately-timed
pulses derived from the software. Referring to Fig.2, it
can be seen that the motor shaft of the S3003 moves be-
tween its angular extremities for a change of pulse width
from approximately 500 ps to 1500 ps.

J]

Extreme anticlockwise

1.0ms

Centre position

1.5ms 20ms

Extreme clockwise

Fig.2 Pulse widths for various positions of the S3003

The spacing between pulses is nominally 20 ms, but
measurement has shown that this is not critical, with spac-
ings from 6 ms to 42 ms producing acceptable perfor-
mance.

Generation of appropriate pulse trains can be imple-

Vol.2

Michael Collier, Jin-Wei SUN 61

mented by software loading and enabling of one of the mi-
crocontroller on-chip timers.

Experimental measurements for the linearity of the
angular movement against pulse width are shown in Fig. 3,
indicating that the relationship has a high degree of prop-
ortionality.

160

—

[

(=]
T

S
(=
T

Servo angle (degree)
®©
S
T

1 1 1

1

1
1600 2000

0 1 al 1 1
0 400 800 1200

Pluse width (us)
Fig.3 Angular position against pulse width for the S3003

3 Methods of multi-servo control
3.1 Previously proposed methods

Several ways of achieving multiple control have been
reported, ranging from personal computer connection”’,
PLCs ™, special interface boards®' , and the use of multi-
ple timers>. The present project required a single timer,
since the other timers on the chip were already bespoke

for other processes.

3.2 Sequential pulse generation

This method creates the pulses for the motors at dis-
tinct non-overlapping times, as shown in Fig.4. The mi-
crocontroller keeps a table of the pulse times currently
required by the individual motors, and uses the timer in-
terrupt to determine the time positions of the pulses.

Servo 1

Servo 2

time

time

Servo 3

time

Fig.4 Time diagrams for the sequential method

When the timer interrupt service routine is called by
the overflow of the timer/counter, the software of the
ISR will terminate the pulse for one motor, and immedi-
ately reload the timer to start the pulse for the next motor
in the cyclic chain. This reload value is read from the
pulse time table which is being constantly updated by other
processes running on the hardware.

3.3 Simultaneous pulse generation

A second method of control is to start all the pulses
to the various motors at the same time. Whenever a timer
overflow occurs the ISR will recalculate the time remain-
ing until the end of the next pulse. Fig.5 shows the timing
arrangement.

—‘ Servo 1 —‘
time
Servo 2
time
Servo 3
time

Fig.5 Timing diagrams for the simultaneous method

4 Software design and implication
4.1 Program structure

The process for controlling the servo motors is in-
tended to form part of a multitasking system. The whole
software package is programmed in the C51 language, us-
ing global variables for inter-process communication. The
inputs for the servo control module take the form of ar-
rays of 8-bit variables which are constantly being updated
by other processes on the system. The programs have been
written for control of five servo motors, but can be ex-
tended to more.

The whole servo control process is entirely interrupt-
driven, once the initialisation function has set the timer
running.

4.2 (51 code for the sequential method

unsigned char pulsetime”’ ;

//Updated from separate process
unsigned char current _servo=0; //Start with servo 0
void main()

%

P1=0x00; /| All output lines low
EA=1;

TMOD = 0x01; //Use Timer 0 in mode 1
ET0=1;

THO = (65536-pulsetime[current _ servo]” 9 + 603)/
256;

TLO= (65536-pulsetime[current _ servo] 9 +603) %
256;

P1=0x01; //Start pulse for servo 0
TRO=1; //Start timer
while(1); //Initialisation complete

62 Journal of Measurement Science and Instrumentation No. 12011
timer0 _ ISR() interrupt 1
{ Servo 1
TRO=0;
if (current servo=4) //After all servos 20 ms ! time
space i
| Servo2 |
I
THO = (65536-301150)/256; //Preload for 20 ms i i time
TLO= (65536-301150) %256; : :
current _servo=99; //Indicate a 20 ms space Servo3 ! :
P1 = 0x00; ! L _
TRO=1; //Start 20 ms space I Reloadl I Reload?2 ileload3 e

}
else
{
if (current _servo=99)

%

current _servo=0; //Reset for servo 0

P1 = 0x01;
|
else
?
P1=P1<<1; //Move to next output pin

current servo+ +;

}

THO = (65536-pulsetime[current _servo]” 9+ 603)/
256;

TLO = (65536-pulsetime [current _ servo]” 9 +
603) %256;

TRO=1;

|

/[Restart timer

%
4.3 Algorithm for the simultaneous method

The procedure is similar to that shown for the previ-
ous method, with the modification that all the pulses are
started at the same time, and the ISR reloads the timer
with the lowest value of the remaining pulse times. This
“shortest-pulse-first” strategy causes the interrupts to occur
at each of the required pulse trailing edges, thereby termi-
nating the pulses at the correct times.

The timer ISR is programmed to perform the follow-
ing:

(1) Make the output pin to the current servo low;

(2) Subtract the previous pulse time value from all
the values in the cycle time table;

(3) Remove from the table any values that have
reached zero;

(4) Make the servo with the shortest time to be the
current servos;

(5) Reload the timer with the remaining pulse time
of the current servo;

(6) If all pulse times have reached zero, then reload
the pulse time table, and load the timer for 20 ms;

(7) Restart the timer.

Fig.6 shows the timer reload values at each stage of
the operation.

Fig.6 Time reload values for the sequential method

4.4 Analysis of the algorithms

An inherently possible problem with the sequential
algorithm is that a large number of servos might produce a
low pulse repetition rate for each motor. The pulse spac-
ing should nominally be 20 ms, but would obviously in-
crease with the number of devices. However, as men-
tioned above, the experimental evidence is that the servo
circuitry is tolerant of a considerable range of values.
Nevertheless the advantage of the simultaneous algorithm
is that all servo pulses go high at the same time, and
therefore the pulse start times are separated by exactly
20 ms, regardless of the number of devices being con-
trolled.

Another cause for concern is that the high frequency
of interrupts may cause a time overhead in the running of
the overall system, since the repeated raising of ISRs may
adversely affect the ability to complete other processes in a
realistic time frame. Experimental measurements with a
system clock of nominally 16 MHz have revealed that the
timer ISR executes in about 8 us. This indicates that the
interrupt latency is small compared with the pulse dura-
tions, and is considered to have negligible affect on system
performance.

5 Experimental results

The above methods have been programmed into a
C8051F206 microcontroller® to assess the effectiveness of
the techniques. Outputs from the chip were connected to
five independent servo motors of the S3003 type. Variable
analog inputs were applied to the microcontroller to oper-
ate the individual servos. Since these tests formed part of
the sailing boat control project, the five motors used were
those already installed in the model yachts, as shown in
Fig.7.

It was observed that each servo followed the corre-
sponding input closely, and that no measurable interfer-
ence between the motors was detected.

Fig.8 and Fig. 9 show the waveforms for two of the
servos, using the sequential method, illustrating the cases
where the servos are at the extreme limits of their range of
movement. These positions correspond to pulses of 400 ps

Vol.2 Michael Collier, Jin-Wei SUN 63

Fig.7 Positions of the test servos in the model yachts

and 1900 ps.

L IL"%W“MMMW"&@MV'-H.

IS L T

2 .88y Tim s P2 .448n=

CHin 2.06U MidD 2.000

Fig.9 Waveforms for the same servos at opposite extremes

When the simultaneous method was used, the wave-
form of Fig. 10 was produced.

RIGOL TOP .

Bus| 0+ 1.420ms

Fig. 10 Waveforms for the simultaneous method

6 Conclusion

The two algorithms given above have provided a

method of control for several servo motors without the
need to allocate one programmable timer to each device.
The interrupt-driven nature of the programs means that
they can be effectively run in the background in a multi-
tasking environment. Empirical evidence suggests that the
degradation of control accuracy is very slight for the in-
creased number of servos, and that cross-talk between the
motor controllers is minimal.

References

(1]
(2]
(3]

(4]
(5]
(6]

Futaba Corporation. Futaba S3003 Servo Standard, http: //
www. futaba-rc.com.

Principia Labs, Arduina-Python 4-Axis Servo Control, http://
principialabs. com/arduino-python-4-axis-servo-control/
Method for one digital control shaft controlling multiple servo
shafts and shaft expansion control device, Ningjiang Machine
Tool Group Co., Ltd., 2007.

Pololu 16-servo controller kit-0, http://www. pololu. com/cat-
alog/ product/240

Emerald Automation Controller-EMC-2100, http://www. iis-
servo. com/ IISAutomationSystems/ EmeraldIntro/ tabid/73x
CB051F206 Datasheet, CYGNAL Integrated Products, 2002.

	M1044_p0060.pdf
	M1044_p0061.pdf
	M1044_p0062.pdf
	M1044_p0063.pdf

