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Abstract — This paper addresses an algebraic approach for wide-
band frequency estimation with sub-Nyquist temporal sampling.
Firstly, an algorithm based on double polynomial root finding
procedure to estimate aliasing frequencies and joint aliasing fre-
quencies-time delay phases in multi-signal situation is present-
ed. Since the sum of time delay phases determined from the
least squares estimation shows the characteristics of the corre-
sponding parameters pairs, then the pair-matching method is
conducted by combining it with estimated parameters mentioned
above. Although the proposed method is computationally sim-
pler than the conventional schemes, simulation results show
that it can approach optimum estimation performance.
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Frequency estimation is an important problem
in many fields including wireless communications,
signal analysis systems and Electronic Warfare
(EW). The most well-known methods are those
based on Fast Fourier Transform (FFT) digital sig-
nal processor from which frequencies estimates are
obtained by picking the peaks'''. These methods
provide for sample accuracy. If better accuracy is
required, computationally interpolation is needed.
For wideband application, if the signal frequency
exceeds half the sampling rate, frequency aliasing
will occur, leading to attendant problems of ambigu-
ity. Another group of methods are time-delay and
cross-spectrum methods™? . These methods estimate
the quantity exp(jw,r) based on phase difference in
the time domain, where w,,is the mth frequency, =
is the delay time. The methods have low computa-
tion burden, but poor performance. Large errors
can be resulted in due to the effects of noise pertur-
bations. Their methods are not applicable to multi-
ple frequencies.

In many systems, such as EW system, wideband
receivers must have a wide bandwidth extending into
the GHz region”’. Although many high-speed A/D
converters are available, low processing speed fol-
lowing the converters may limit the overall opera-
tion of the receiver. The problem of wideband high-
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frequency applications with sub-Nyquist sampling
has been investigated for many years. In Ref.[4-5],
frequency unambiguous estimation was achieved by
using two or more A/D converters with different
sampling rate. Based on Chinese remainder theo-
rem, these sampling rates could satisfy the unambig-
uous frequency interval. In Ref. [6-7], eigen-sub-
space-based methods utilize an auxiliary time-delay
channel to disambiguate the aliasing frequency ,
which can solve the problem of multi frequencies si-
multaneously . These approaches have excellent per-
formance but more amount of computation.

In this paper, we propose a novel approach for
wideband frequency estimation with sub-sampled
temporal data by using polynomial root finding
method. By utilizing the temporal data from sub-
Nyquist sampling channels which are delayed with
multiple delay time, two polynomial equations for
estimating aliasing frequencies and joint aliasing fre-
quencies-time delay phases can be obtained. Sequen-
tially pair them by combining them with the sum of
time delay phases determined from the least squares
estimation. A closed-form solution for unambiguous
frequency estimation is provided. As a result, the
proposed approach is computationally simpler and
comparable to the subspace-based methods in perfor-
mance.

The rest of this paper is organized as follows.
Section 2 gives a detailed description of the proposed
method. In section 3, performance is evaluated for
multi frequencies. Section 4 is the conclusion of this
paper.

1 Frequency disambiguation

The mathematical proof of the proposed meth-
od is given as follows. The model of the noisy data is
described by

xo(n) = stxp(errfkn/fA) + U.z-U(")- (1)

The signalkxlo (n) consists of K sinusoids de-
scried by the frequency {f, | and the complex ampli-
tudes {s, 1, (k=1,-+,K). Let the sub-sampling
rate be denoted as f, which does not exceed two
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times the smallest frequency. M —1 more processors
can be used while each works with delay time mt
(1<<m <M — 1), where 7 is the delay time suffi-
ciently long to satisfy the frequency disambiguation
requirement. The output of the processor can be
written as

x,,( L spexp(j2nf, (nlf. + mz)) + v, ( ),
o< m<M-1, (2)
where v, (n) is a zero-mean complex Gaussian

white noise with variance o . In the matrix form,
the noisy data matrix formed by sample data x,, (n)
(0<Xm<M — 1) can be expressed by X =[X,, X,,
X5, Xy 11, where X, =[x, (n),x,(n+1),,
X, (n+M—1)]" with T denotes the transpose oper-
ator. From the diagonal elements of the matrix, we
have Vandermonde vector Y = [y, (n),y,(n), -,
yyu 1(n)]". where

v, (n) = Zskexp(jZn'fkn/ﬂ + 2nfom (1) f. + 7)) +

Uy (n), vy (n) = v, (n+m). (3)

In a similar way, elements of Vandermonde
vector Z=[zy(n),z,(n),,zy (n)]" formed by
the first row of the matrix X can be written as

Z.(n) = Lékexp(]ankn/f + j2xf,mz) + V. (n),
Uzm(n) = U1m<7l). (4)

It is shown in Appendix that elements of
Vandermonde vectors X, can be rewritten as

K
xo(n +m) = 2(— I)HIW(K}")xO(n +m— k).
k=1

(5)

Elements of Y and Z are also rewritten as

yu(n) = >3 (= D"V, (n) (6)
2, (n) = D) (= D" Us, (n) (7)

k=1
Matrix form of Eq. (5) can be expressed by
M xo(n +K) —xon+K-1) (=DK% (n+1)
xo(n + K +1) - xo(n + K) (= Dy (n +2)
Lxo(n +2K — 1)

—xp(n +2K =2) (- DXxi(n+K)

Wi xo(n + K +1)
w _ xo(n+K+2) (8)
Lw & o(n +2K)
where
Wﬁ(l) — wl + 'UJZ + cese _|_ wK ,
Wﬁ?) = wywy; twyws oot wg g wy,
‘/V(/€> — cee 4 e 4 cee
K — W W' w, WK1 WK """ WK »
(K) _
WK = W Wy WK »

w, = exp(i2xfilf), k=12, K.

From the principle of Vieta’s theorem, we
know that w, is the root of the below polynomial
equation.

D(w) =w" = W, """+ + (- 1D""W w+
(- DWW, =0. 9)

The K roots closest to the unit circle of the
polynomial D(w) allow to estimate the aliasing fre-
quencies, given by w, = exp(j2xf,/f.) (B =1,2,-,
K). In equation form, this is equivalent to estimate
joint aliasing frequency-time delay phases from
Eq.(6), given by v, = exp(j2x/, (1/f, + 7)) (k =1,

,K). More important is the data association
problem wherein the aliasing frequency must be
paired with the right joint aliasing frequency-time
delay phase so that aliasing frequency can be disam-
biguated properly. The sum of time delay phases
constructed by Eq. (7) shows the characteristics of
the corresponding parameters pairs, which is satisfy-

ing u = Z exp(j2nf,7) and independent of sub-sam-

pling rdte fs The estimation of u is then deter-
mrned from the Least Squares (LS) estimation of

Uy, where [U, UY, -, U ]" = (ZkzK) ™
ZKz/e
ze(n) = zxa(n) (= DF 2 (n)
7 - s (n) =g (n) (= DE ()
K ’
2ao1(n) = zaxa () (= D¥ e (n)
ZKH(”)
_ ZK+2(7’1)
Zk,f
ZZK(n)

In addition, since v,/w, = exp(j2xf,r), which
is also independent of sub-sampling rate f,, w, and
v, can be paired properly via the formulation in
Eq. (10).

Koov,
(wy,v,) € arg[mm L%}I kal —u (10)

The aliasing frequency of thesinusoid is ulti-
mately determined from w, is

fm( f\

= Lf. —Zﬂarg(iok), (11)

where the true frequency fi is denoted as f,™, [ is
an integer and arg(x) is the angle of x. The ambi-
guity can be resolved with another paired estimated
frequency denoted as fi7™™, which is obtained from
v, by

fine

)/(27[‘2')

where sinceis v, /w, is mdependent of f,, fi*™ is the
unambiguous frequency estimation, but has poor
performance compared to fi™ due to the effect of
noise and delay time perturbation. Equating the ex-

(12)
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coarse

pressions for f}™ and £, the estimation of [ is

arg( )/(ZW) A arg(wk) L],

0<<C 1, < floor ( ]}mx )

l, = arg min

(13)

where floor (x) is the integer closest to, but less
than x, fu. is the upper limit on processible fre-
quency.

On one hand, regarding major computational
complex1ty, the number of multlpllcatlons for calcu-
lating w,, v, and u includes O (K*) in the Wk,

Vi, or Ux(k=1,2,--+,K) computation and O(K")
in the polynomial rooting procedure. On the other
hand, the eigen-subspace-based method involves
O(M*) for cross-covariance computation and
O(M’)for the eigen-value decomposition of the co-
variance matrix. For the typical conditions of
M >K, the computational attractiveness of our pro-
posed method is indicated.

2 Simulation results

In this section, signal frequency based on the
polynomial root finding approach is estimated by
simulation modeling and the performance as a func-
tion of the SNR is also evaluated. Two equal-
strength signal sources in the interval [300 MHz,
500 MHz] are assumed throughout the tests. The
subsampling rate f; is selected as 100 MHz. The
tests below are all repeated for 500 times.

First, we evaluate the probability of failure
pairing P; between w, and v, for values of &* cover-
ing the range [ — 30 dB, — 10 dB] and for selected
values of delay time = as shown in Fig. 1.
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-30 -25 -20 -15 -10

o2(dB)
Fig. 1 Probability of failure pairing P versus o? for selected values
of delay time ¢
The number of temporal samples is set to 20.
The performance degrades asdecreases while o° is
kept constant. It is because the smaller the delay
time is becoming, the more severely the sum of right

parameters pairs L ; is influenced by noise pertur-
k=1 'k

bations, which makes the incorrect pairing more

probably. The figure emphasizes the fact that the
probability of failure pairing depends on delay time.
In the second example, the probability of disambig-
uating the aliasing frequencies properly P, versus
SNR is investigated. For aliasing frequencies re-
solved with another paired set of frequencies which
are related to delay- time, the disambiguation per-
formance upgrades as delay time increases as shown
in Fig.2.
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Fig.2 Probability of proper disambiguation P versus SNR for se-
lected values of delay time ¢
Fig.2 reveals that the delay time should be set

sufficiently long but to satisfy the frequency disam-
biguation requirement. After properly pairing
(Wi, v )k=1,2 and disambiguating aliasing fre-
quencies, the RMSE of frequency estimation versus
SNR is studied in the final example. Fig. 3 shows that
the estimation accuracy of the proposed algorithm is
comparable to that of ESPRIT-based method.

107 - I
S : —5— Proposed
o X —%— ESPRIT

RMSE of frequency(dB)
S

10 115 ZJO 2‘5 30
SNR(dB)
Fig.3 RMSE of frequency versus SNR

3  Conclusions

An algorithm that disambiguates the aliasing
frequencies for wideband high-frequency applica-
tions is presented. The key idea in the algorithm de-
velopment is to utilize the properly paired roots of
the two polynomial equations constructed from sub-
sampled temporal data. The performance of the
method is studied in terms of the probability of fail-
ure due to noise. The effects of other system param-
eters on the performance of the proposed method
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are also investigated.
Appendix A

In this appendix, Eq. (5) is proven by finite induction. Let x, be rewritten as x'"’

notes number of signals.
1) The result clear holds for N =1, since
:cm(n + m) =

2) Consider N =2, assume W."

(2) + +
27 (n+m) =w]"s, + wh'" sz

K-1

I,(Kfl)(n +m) = Z(*
k=1

(wl + w, ) (w)
w2 P (n+m 1) -
3) Assume that Eq. (5) is valid for N=K —1, then

. The subscript N de-

W(l) Y+ m—1) = w, 2P (n+m—-1). (14)
=w, +w, and W<2> =w,w,, then

n+tm—1

5| + uj;zﬁm 152) wlwz(wnﬂ" 251 + w721+/11*2 52) _
P 2P (n+m—2). (15)
WE 25V (o +m— k). (16)

4) For N=K, the measurement equationfis given by

K
x(K)(n + m) = 2(—
k=1

l)kHW;(k)x(K)(n + m — K) = [JC(K)(H +m — 1>,"',(_

D 2+ m - k),

1
wg,1,+,0,0 W,
.,(_1)K+1 K)(n‘i‘?n—K):l O.wK"l’“"O W<2) _
0,09""0au’K W(K 1)
i x(K)(n+nz—1)wK ] 1
2+ m—-1) - 2% (n + m — 2)wg W
K-1
w2, 17
(*1)’81”0(71+m*k+1)+(fl)k+lx(m(n+m*/e)'wK __.KI (7)
WD
L(— 1)K.r(K)(n +m-K+1)+ (= 1)K+I.Z(K)(n + m — K)wg] K

(- D'

Bt m—k+1)+ (-

= (D" " (n+m—k+1)

D' 2™ (e + m — k) wg
= (- D[S+ m—k+1)+ sl

_ (JC(K 1) (n + o — k) + gKun+m k— 1)WK}

2+ m - B)wy). (18)

Substituting Eq. (18) into Eq. (17) yields the result Eq. (19).

x(K)(n + m) =
(- D" " +m—k+1) -

2 l>(n +m — K)wK)W(K D=

K-1
wkZ(* 1)kHW(Kk,),x(K7”(n +m—k-1) =
=1

20+ m - 1) wi + E(,
=1

(0 +m — 1w, + (" Y"n+m—-1) - 1<K71)(n + m —Z)wK)W%ll + -0+
25V (0 m - /e)wK)W(K}")l + -

+(-DG" "+ m - K+1) -
K-1

1)t Wﬁf)lx(K*”(n +m— k) —

(K)(n +m—1)w, + x(Kfl)(n +m) — PR

(n+m—1wx = = (% Yn+m-1+ s " ) wy + 25+ m) = 2CV(n+ m - 1) wi

K-1 1
— I( )(n + 7)1) + ngqum

(19)

As a result, the equation comes as desired. This completes the proof of the proposition.
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