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Abstract: An improved immune algorithm is proposed in this paper. The problems, such as convergence speed and optimization

precision, existing in the basic immune algorithm are well addressed. Besides, a fuzzy adaptive method is presented by using

the fuzzy system to realize the adaptive selection of two key parameters (possibility of crossover and mutation). By comparing

and analyzing the results of several benchmark functions, the performance of fuzzy immune algorithm (FIA) is approved. Not

only the difficulty of parameters selection is relieved, but also the precision and stability are improved. At last, the FIA is ap-

plied to optimization of the structure and parameters in radial basis function neural network (RBFNN) based on an orthogonal

sequential method. And the availability of algorithm is proved by applying RBFNN in modeling in soft sensor of solvent tower.
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0 Introduction

With the development of immunology and its re-
search methods, the mechanism of biologic immune
system has attracted increasing attention from re-
searchers in recent years. Due to the powerful ability
of information processing and special characteristics
such as diversity, adaptive trait, biologic immune
system has become a hot spot of artificial intelli-
gence.

Being the defense system of mammal, immune sys-
tem plays a significant role in keeping the normal life
activities of animals. If it is weakened or destroyed,
lives will be endangered. The process that immune
system annihilates viruses can be briefly described as
follows:

Once bacteria invade and enter the bloodstream or
lymphatic system, they will encounter B cell and the
antibodies withheld within B cell” s membrane will
detect antigens in the bacteria. Thenceforth, T cells

communicate with B cells based on the received infor-
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mation about the antigen from macrophages earlier
and by so doing, B cells are inspired to propagate.
The propagated B cells are converted into memory
cells and antibodies are produced. With the aid of
macrophages and other proteins within biologic
bodies, antibodies bind to antigens and kill the anti-
gens after they enter into blood system through the
heart.

Being an innovative optimization algorithm based
on immune mechanism, the immune algorithm
(IA)™ is employed to address the multi-modal func-
tion optimization problem. It imitating the principle
of our defense system annihilating foreign disease —
causing bacteria or viruses through self-learning and
self-adjusting. The capability of somatic theory and
network hypothesis of immune system of multi-modal
optimization problems has been examined in
Ref.[2]. An IA is introduced in Ref.[3] to search

for diverse solutions to design problems for electro-

magnetic devices, where optimal solutions are aggre-
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gated in memory cells,

Differences in the production system for memory
and antibodies distinguish IA from genetic algorithm
(GA) although they are quite similar. Besides, 1A
manipulates a population of candidates simultaneous-
ly in the search space whereas GA manipulates just
one. Compared with GA and other evolution pro-
gramming, [A promotes the general search ability
through the mechanism based on memory pool. At
the same time, it realizes the function of self-adjus-
ting by calculating affinity and concentration. To

some extent, it avoids premature convergence.,

1 Soft sensor and RBF neural network

In order to get eligible production, quality control
wields an important role in industrial manufacture,
Because of the complexity of industrial process espe-
cially in the petrochemical industry, it is very diffi-
cult to realize the real-time strict control of the quali-
ty of some products. Under many circumstances, the
qualities of many products are tested off-line by labor
because of the high price, difficulty of maintenance,
time latency of on-line measure meters.

The conception of soft sensors, which combines
control knowledge and technologic theories together,
was firstly brought forward in Ref. [4]. Some varia-
bles which can be easily measured are selected to
compute real-time reliable estimates data of other
ones which can not or is difficult to be measured by
designing proper algorithms. Nonlinear modeling
techniques are usually utilized to develop soft sensors
to handle the peculiar nonlinearities of processes-".
Not only can soft sensors be operated alone as a valu-
able, economic replacement of costly hardware sen-
sors, but also work in parallel with real sensors to al-
low model-based techniques to be adopted in order to
develop fault detection functions devoted to the anal-
ysis of the sensor’s health status.

Radial basis function neural networks (RBFNN) is
an excellent neural network in performance. In 1990,
Girosi and Poggio had proved RBFNN can approach
any nonlinear functions by discretionary precision'™.
RBF networks are gaining increasing popularity in
many scientific and engineering fields as a result of

their strengths compared with other types of artificial

neural networks (ANN), e. g. improved approxima-
tion capabilities, simpler network structures and fas-
ter learning algorithms.

RBF networks are composed of three layers, inclu-
ding the input, hidden and output layers, which form
an unique neural network architecture. The input
layer communicates the entire network to its outside
environment. In the hidden layer, all the nodes are
connected with centers, and they are vectors with a
dimension identical to the number of inputs to the
network. A RBF is employed to pass the node activi-
ty; the feedback from a hidden node is generated.
Lastly, the output serves as a summation unit, which
is linear. The structure of a typical RBFNN is pres-
ented in Fig. 1.

Fig. 1 Typical MISO RBFNN

But how to decide the number of neurons within
the hidden layer has always been the problem coun-
teracting the application of RBFNN. There is a pos-
sibility that a small network never converges, how-
ever, a large network converges fast but lacks the
generalization ability. Besides a suitable network
size, there are many other questions that need to be
answered to use a network for a particular problem.
Learning step, proper training procedure, number of
layers, network initialization, value of gain and the
number of neurons in each layer are some difficulties
which block the wide application of neural network.
In this paper an orthogonal sequential method-* is re-
presented producing RBFNN models based on an im-
proved IA, which is used to auto-configure the struc-

ture of the network and obtain the model parameters.
2  Fuzzy immune algorithm

2.1 Basic principles of immune algorithm

For the optimization problem, the antigens and an-
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tibodies in the immune system are represented as the
objective functions and feasible solutions, respective-
ly.

The coding method for traditional IA is similar to
that for the GA, which is coded in binary. In this pa-
per a new real-coding based evolution 1A because of
the advantages of real coding algorithm in training
neural network™ is represented, which effectively
improves the performance of traditional 1A, solving
the problems such as premature convergence, low

speed of calculation and low precision.
2.2 Calculation strategy of FIA

The steps of FIA are illustrated as shown in Fig. 2.

Initial antibody and memory pool

I
Y

Calculate affinity values

i

Promote and restrain antibodies

a4 Determine crossover and
‘ Select antibodies ‘ {mutation rates via fuzzy system

Crossover and mutation implementation

i

‘ Generate offspring generation and update memory pool

Output result

Fig. 2 Flow chart of FIA

Step 1 (Recognize antigen)

Antigen: objective function (generally minimum
value).

Antibody: feasible solutions.

Step 2 (Produce initial antibody population and
memory pool)

In this step, the antibodies are generated randomly
and then compartmentalized to the given intervals.
The memory pool is a zero matrix of given size.

Step 3 (Calculate the affinity values of all antibod-
ies)

TIA uses affinity value as a discriminator of the

quality of solutions represented by the antibodies in a
population. Because the final target of the algorithm
is searching the minimum value, function values of
all the antibodies are calculated and sorted in ascend-
ing sequence.

To calculate the affinity value a f finity(i) of anti-
body ¢, it is given by

af finity (1) = r(r— 1", (D

where r is a random number in the interval [0. 01,0.
3.

Step 4 (Update memory pool)

Eminent antibodies from the present population are
selected by their affinity values and concentrations in
order to update memory pool which can be used to
generate the offspring antibodies population.

Step 5 (Select antibodies)

1) To calculate the concentration con (i) of anti-

body 7, it is given by

N 1 row
con(i) = mw;K,,,,,,, (2)
where
K. — 1, | Antibody, — Antibody, |<I, (%)

0, otherwise.
2) To calculate the selection probability Ps(i) of

antibody i, it is given by

Ps(i) = 4

af finity (i) /con (i)
> af finity (i) /con (i)
i=1

3) A roulette selection is implemented based on the
computed selection probability for the antibodies.
This allocates each antibody a probability of being se-
lected proportional to its relative affinity and concen-
tration. A new antibody generation can therefore be
formed by spinning the designed roulette,

Step 6 (Determine crossover and mutation rates
through fuzzy method)

In IA, many parameters play an important role in
determining convergence and convergent rate, such
as crossover and mutation rates, Crossover is one key
1A operator that promotes the new region exploration
ability in the search space. Generally, crossover rate

should be chosen comparatively big®!, between 0. 7
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and 1.0. Mutation is another IA operator which
guarantees the diversity of the population. In
Ref. [8], the mutation rate should be chosen be-
tween thousandths and hundredths.

According to Ref. [9], statistical method, support
vector machine or neural network can be utilized to
adjust crossover and mutation rates. However, we
have found that fuzzy system approach makes better
contributions to the IA in both time consumption and
precision when compared with above methodologies.

AP, is the change in crossover rates between two
consecutive generations; AP,, is the change in muta-

tion rates between two consecutive generations.

SO fun@®
S D= = (D

overs and mutation fuzzier input data £ (), fun (£,

P. and P,, are the cross-

fwax (£) are the average, minimum and maximum
function values of ¢th generations, respectively.

The membership functions for input f4(z), and
output AP, are shown in Figs. 3—6. In the same way
the membership functions for input f4(2), P, ., AP,

and fuzzy decision table for AP,, can be drawn.
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M .
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Fig. 3 Membership function of f,(t)
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Fig. 5 Membership function of AP,
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Fig. 6 Membership function of AP,

According to a great deal of experimental data and
expert knowledge, the fuzzy decision for AP, is made
and presented in Table 1. By virtue of the same theo-
ry, the fuzzy decision table for AP, can be genera-
ted. In the table, NH, NL, NM, NS, ZE, PS, PM,
PL and PH are abbreviated for Negative Huge, Neg-
ative Large, Negative Medium, Negative Small, Ze-
ro, Positive Small, Positive Medium, Positive Large

and Positive Huge, respectively.

Table 1 Fuzzy decision table for APc

p.

Sao
NH NL NM NS ZE PS PM PL PH

Z2E PH PH PL PL PM PS PS PS ZE
pPS PH PL PM PSS ZE ZE NS NM NL
pPM PL PL PL PM PS ZE NS NM NL
pL PL PL PM PM PS NS NM NM NH
PH PH PH PL PL PM PM PS PS ZE

Step 7 (Crossover implementation)

The crossover operator represents the mixing of
antibiotic material from two selected parent antibod-
ies to produce one or two child offspring antibody
population, The amount of antibodies take part in
crossover implementation is determined by crossover
rate P., which is adjusted by fuzzy method.

An improved arithmetic crossover operator is de-

scribed as

{Antib()dy; = by » Antibody, +b; « Antibody; ,
Antibody, = b, + Antibody, + b, « Antibody:
(5

where b, =0. 5+b, b,=0.5—b, and b is a random
number in interval [0,1].
If the offspring antibody exceeds the given inter-

vals, another operator will be selected.

{Antibudy/l = b« Antibody, + (1 —b) + Antibody; ,
Antibody, = (1 —0b) « Antibody, + b « Antibody,.
(6)
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Step 8 (Mutation implementation)

An uneven mutation method"""'" is described as
follows:

For one given parent antibody, if its element x,, is
randomly selected to mutation, the corresponding el-
ement in its offspring is likely to change in two possi-
bilities

Xy — T + A(l‘%z‘:}xmx — T ) ’

Lo :ImiA(t’Imi‘rgi‘m)i (7)

max .min

where x** and zi" are the upper and lower limits of
2. The value of function A(z,y) gradually reduces
to zero along with the rise of ¢ which is evolution

generation. For example,

AR :yb<1—%>r,

Altyy) = y(1—pT)" ), (8)

where T is maximum generation; ¢ is current genera-
tion; r is a fixed uneven parameter, usually r=2; &
is a random number in the interval [0,1].

In this paper, an improved mutation method is in-
troduced, and its idea mainly comes from differential

algorithm™'*,

Antibody,, = Antibody,, + (— 1! (1 —b"7T")
(Antibod y e — Antibody,,) €D

where antibody. is the optimal antibody of the cur-
rent generation which is stored in memory pool.

Step 9 (Generate new antibody population and up-
date memory pool)

Antibodies with high affinity value will evolve into
next generation and be added into memory pool. Giv-
en number of new antibodies will be added into anti-
body population replacing antibodies with low affinity
value.,

Step 10 (Termination criterion).

For this step, the search is terminated if the fol-
lowing conditions are satisfied:

1) The values for min value do not change for sev-
eral generations,

2) When the set number of evolution T is a-

chieved.
2.3 'Test examples

Several standard test functions are used to examine
the ability of FIA and its advantages superior to other
algorithms in the same test environment and condi-
tion. Except for parameters adaptive selection, the
FIA is similar to other algorithms in flow and
thought. The standard test functions and test results

are shown in Table 2 and Table 3, respectively.

Table 2 Three standard test functions

Index Name Expression Dimension Variable range Anticipated value
n—1
1 Rosenbrock f(x):21(100(1';+1*1‘,2)24*(1';*1)2) 10 [—2.048, +2.048] 10—°
2 Grievank [ =72 S~ T cos (£ ) +1 30 [—600, 600] 105
. 4000;=17" = NG ’
3 Schwefel floy=— %x,- * sin /Ty ] 10 [—500. 500] 105
Table 3 Results of test functions
FIA 1A GA
Functions Success Success Success Success Success Success
generation ratio (%) generation ratio (%) generation ratio (%)
Rosenbrock 452 100 605 100 732 100
Grievank 1922 100 2 561 84 3724 62
Schwefel 2 952 98 3586 76 0
The above data indicate that FIA can effectively gorithms,

solve the premature problem and is suitable for com-
plex optimization problems. The algorithm is not
trapped by the local optimal solution and can prompt-
ly and accurately obtain a full set of global optimal

solutions, which are incomparable in other similar al-

3 Configuration of RBFNN using FIA

Like GA and other evolution algorithms™"**J, TA
has three main applications in neural network:

1) The parameters learning of neural network;
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2) The topology structure selection of neural net-
work;

3) The parameters and structure optimization of
neural network.

And the standard procedure for RBF networks
learning problem can be decomposed into two steps:
The first one is obtaining the number and centers of
the nodes in hidden layer and the second one is calcu-
lation of the connection weights using simple linear

regression.
3.1 General ideas and theories*’

For typical RBFNN, if w; denotes output weights,
¢:(X.C)) denotes the output of ith neuron, X=[x, .
Ty **s X, | 1s input vector, C; denotes the hidden
node center locations of ith neuron and y denotes lin-
ear summation of output of hidden layer neurons. If

the RBF is Gauss function,

m

> jeh?
=1
$:(X.C) =e iz, (10)
y= D wg¢:(X,C) Fe,. (1)
i=1

For one set of training data, the equation can be

transformed into

Y= >WQ +E,. (12)
i=1
And then
Y =w0Q +E, (13)
E1 — Wng +E2 . (14)
En*l - WnQn +E11- (15)

So the given equations can be transformed into
E ., =wR,+w(Q,—R,) +E,. (16)

Obviously the influence of @, —R, can be elimina-
ted by change w; s ws s ***+ 10, | INTO W s Wy s *** s W, |
and then

E,, =WR,+E,, an

H En ? = (En~1 7W7’ar)T(En~l 7W7’rR71) =

EL E,, —2W,EL R, +W/!RR, =

|E, . [|?—2W,EL,R, +W/R!R,. (18)

From above equation, we can conclude that the
target of the n" training is to obtain W, and C, in or-

der to minimize || E, || 2.
3.2 'Two-step learning strategy of RBFNN

3.2.1 Design of network structure
Real-coded algorithm is suitable for neural network
training because the antibodies are the real values in

" anti-

neural network. The real-coded method for i
body is that the former n+1 columns are relevant n
centers and one warp and the last column is affinity
value of the antibody.

The steps of RBFENN training are depicted as:

Step 1: Initialization. i=1, E,=Y.

Step 2: For every antibody, calculating Q;.R; .W,,
E., using fuzzy immune algorithm calculates the best
antibody C;, and the relevant Q;, R;.W., E; will be
chosen to be the parameters of ™ neuron of hidden
layer.

Step 3: If output satisfies stopping criterion, net-
work training will stop. Otherwise, i(=i+1, and an-
other neuron will be added.

3.2.2 Design of network output layer

Because of the output layer is linear and it serves as

a summation unit, the least square method can be

chosen to calculate

W= (Q'Q) Q. a9

3.3 Result of soft sensor

One pure-terephthalic acid (PTA) solvent tower is
chosen as research object in this paper and the ulti-
mately target is to establish the soft sensor model for
acid content of the bottom flow of the solvent tower.
Solvent dehydration is an important unit in PTA
manufacture process. Because of the long delay and
slow dynamic response of the rectify process, it is
very difficult to realize the real-time control of the
production quality., The running situation of the con-
trol system largely depends on the operators’ techni-
cal levels and habits. Although the set can run
smoothly in a short time, it cannot reach the optimal
state. Great care was taken in both selecting the ap-
propriate set of training examples, which covered all

the operating conditions of the plant. According to
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technologic flow, three parameters ( conductance,
temperature and pressure) are selected as inputs to
the RBF neural network, whereas the output is the
relevant acid content. For 175 metrical data, former
100 are chosen to train neural network and the other
75 are used to determine the availability and generali-
zation ability of the neural network.

To avoid over-learning phenomena, an early stop-
ping approach is used. The parameters in FIA are set

as
Popsize = 50, Memorypool = 20,
P.=0.7, P, =0.05.

And the results of training and estimation are
shown in Figs. 7 and 8. Parameters comparison be-

tween different neural netowkrs are presented in

Table 4.

94 T T r r ‘ ‘

T
------ Training result

92
90+
88t

86 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

1_
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A1t i
2

0 10 20 30 40 50 60 70 80 90 100

Fig. 7 RBEFNN training result
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Fig. 8 Comparison between NN estimation and correspond-

ing actual data

Table 4 Parameters comparison between different neural net-
works
Number of Max Standard
Networks nodes in MSE relative relative
hidden layer error error
FIARBF 8 0.116 8 0.018 7 0.002 8
OLSRBF 9 0.133 6 0.022 4 0.003 1
Conventional RBF 12 0.141 9 0.023 54 0.003 3

4 Conclusion

The simulation results indicate that the proposed
methodology is effective and accurate. The parame-
ters of neural network are optimized by using FIA,
not only the number of nodes in hidden layer can be
reduced, but also the generalization ability can be im-
proved. As the study of combining FIA and RBFNN
in soft sensor modeling is emerging recently, there
are many aspects we can borrow from the immune

system and fuzzy system, and further research is nee-

ded.
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