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Abstract — The performance of the conventional Kalman filter
depends on process and measurement noise statistics given by
the system model and measurements. The conventional Kalman
filter is usually used for a linear system, but it should not be
used for estimating the state of a nonlinear system such as a sa-
tellite motion because it is difficult to obtain the desired estima-
tion results. The linearized Kalman filtering approach and the
extended Kalman filtering approach have been proposed for a
general nonlinear system. The equations of satellite motion are
described. The satellite motion states are estimated, and the
relevant estimation errors are calculated through the estimation
algorithms of the both above mentioned approaches implemented
in Matlab are estimated. The performances of the extended
Kalman filter and the linearized Kalman filter are compared.
The simulation results show that the extended Kalman filter is
much better than the linearized Kalman filter at the aspect of
estimation effect.
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1 Introduction

Since the Kalman filter''? appears, it is usually
used for estimating linear systems, but absolute lin-
ear systems do not really exist. All systems are ulti-
mately nonlinear. Many systems are close enough to
linear that linear estimation approaches give sati-
sfactory results, but for some nonlinear systems the
linear approaches for estimation no longer give good
results. Therefore, many nonlinear estimation ap-
proaches are studied, such as Extended Kalman Fil-
ter ( EKF )®*, Unscented Kalman Filter
(UKF)®" | Particle Filter (PF)®™° and their com-
bined approaches.

The satellite motion states determination prob-
lem consists of two basic parts: propagating the state
estimates forward in time and updating the state es-
timate based upon the new measurements of the pa-
rameters which are functions of the states.
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A simple example is taken for the linearized
Kalman filter and the extended Kalman filter to de-
velop the filtering approaches for a nonlinear system
such as satellite motion states description. In the
next section the updated equations are described cor-
responding to the linearized Kalman filter and the
extended Kalman filter for a general nonlinear sys-
tem. In the third section the nonlinear motion
equation of a satellite is presented in the state space.
In the fourth section the satellite motion states are
estimated through both nonlinear Kalman filtering
approaches. Finally, the performance of the extend-
ed Kalman filter against the linearized Kalman filter
is demonstrated, and the conclusions are reached.

2 Nonlinear system model

Consider a general nonlinear system model and

measurement model as
x(t) = flx(e),0) + w(t),
z, = h(x,(2,)) + v, (1)

Where x (¢) is the state vector of the system,
f(x(z),t) is the process model, w(z) is the process
noise assumed to be white Guassian with zero mean
and covariance Q(¢), w(z)~N(0,0Q(¢)), z, is the
measurement vector of the system at the time step
k, k=1,2,-,h(x,(t,)) is the measurement mod-
el, v, is the measurement noise assumed to be white
Guassian with zero mean and covariance R,, v, — N
(0, R, ), and assume that the process noise and the
measurement noise are uncorrelated, E[w(z)v, ]=0
for all kK and ¢.

The initial condition is assumed as

x<0) ~ N(v%o’Po),
P, = E[(Io - 120)(10 - JA“/(])T]-

3 Nonlinear filtering method

This section presents the linearized Kalman fil-
ter and the extended Kalman filter and gives their
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updated equations for estimation""'" .

3.1 Linearized Kalman filtering method

For the nonlinear system model Eq. (1), the
state estimate equation can be written as

x (1) =f(x(t),2) + B
- F(x(0),0)[x(t) —x()],  (2)
where f(x(¢),t) is the nonlinear function depend-
ing upon x (¢) and ¢, F(x(t),t) =
% I is the transition matrix, x(z) is
the mean of the state vector x(z), x(z) is the esti-
mation of the state vector x(¢).
The error covariance equation is given as
P(t) =F(x(t),t)P(z) +
P(t)F'(x(2),2) + Q(2), (3)
where P(¢) is the covariance matrix.
The updated state estimate equation is given as
X =x0 + Ko{z, — h(x(2,)) —

Hk(;<t/e))[3}{}(tk)“, (4)
where H,(x(z,)) = W is the
k x(,)=x(z,)
measurement matrix, K, is the gain matrix.
K,= P, Hy(x(2,))
[Hk(-;(tle))Pk’HZ(-;(lk»+R1e:|71- (5)
The error covariance equation is given as
P, :[I_Kka(;C(tk))]Pk’- (6)

Eq. (2) ~ (6) constitute the linearized Kalman
filtering algorithm for nonlinear systems with dis-
crete measurements.

3.2 Extended Kalman filtering method

For the nonlinear system model Eq. (1), the
state estimate propagation equation can be written as

) x= f(x(2),1), (7)
where x (¢) is the estimation of the state vector
x(t), f(x(¢),¢) is the nonlinear function depend-
ing upon x(¢) and ¢.

The error covariance propagation equation is
given as
P(t) =F(x(t),0)P(¢) +
P(t)F " (x(2),2) + Q(2), (8)
where F(x(z),1) = % e is the tran-
sition matrix, P (¢) is estimation error covariance
matrix.
The updated state estimate equation is given as
-’Afk’ :-’A‘/e’ +Kk[zk*hk(-;€(tk’>>:|, 9)
where K, is the gain matrix
K, =P, HZ(-’AC(Z/{ )
[Hkb}([k’ ))Pk’ HZ(-’AC(ILT )) + Rk ]71 ,(10)
Ihy (x(1;))

ax(z,) is the

x(4,)=x(1,~)

where H, (x(¢,-)) =

measurement matrix.
The updated error covariance equation is given
as
P = [I*K,er()Ac(t,;))}P,;. (11)
Eq. (7) ~ (11) constitute the extended Kalman
filtering algorithm for nonlinear systems with dis-
crete measurements.

4 Satellite motion equation

A planar model for a satellite orbiting around
the earth can be described as'*’

;= - GM

+2,

g =20,

,
where r is the eistance of the satellite from the cen-
ter of the earth, 0 is the angular position of the sat-
ellite in its orbit, G is the universal gravitational
constant, M is the mass of the earth, and w is ran-
dom noise due to space debris, atmospheric drag,
outgassing, and so on.
The state variables are chosen as

(12)

Xy r
I
x = Iy (13)
Xy 6
The description of the state-space is
r
i N .
ol |F -
. x| B
R _ 20r
B r
X, ]
> GM
XXy — Y
= T b w (14)
Xy
~ 2x4x,
L X1 i
The measurement equation is
r
710 0 07~ B {xl}
‘[0 0 1 0} ol Lt )
0
5 Simulation
The linearized system matrix is given as
_Idf _
F = FP
0 1 0 0
2 ~ 3
x5 +2GM| 2} 0 0 2x,24
0 0 0 1 » (16)
2x,x,] 2t —2x,2, 0 —2x,/x,
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_
ok

1 0 0 0

=lo 0 1 o) (17)
where the dependence of x upon ¢, and f upon x
and t, and h upon x and ¢, is suppressed for nota-
tional convenience.

In order for the orbit to have a constant radius
when w =0, then ¥ = 0 — GM/r*, which means
0=~ GM|r,i.e. z, = GM[r = GM/x} or
GM = z;z;.

Note that at the linearization point r =0, i.e.
GM = riw;, then the matrix F at the linearization
point is given as

0 1 0 0
3w; 0 0 2ryw
F = 0 070 (18)
0 0 0 1
L 0 - 2(1)0 Ty 0 0
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The estimation errors of the linearized Kalman
filter are shown in Fig.2.

The estimation errors of the extended Kalman
filter are shown in Fig. 3.

The comparism of the curves in Fig.2 and Fig. 3
shows that the estimation errors of the extended
Kalman filter are fewer than the these of the linear-

Set the initial conditions as follows
G =6.6742x 10" m’/kg/s",
M = 5.98 x 10** kg,

w~ N(0,10°),
r=1r,=657%x10"m, r =0,
0=awT,0=w = GTM,
o
x(0) =[r, 0 0 1.05w,]",

x(0) = x(0), P(0) = diag(0,0,0,0).

Using Matlab programs, the estimation results
of both the linearized Kalman filter and extended
Kalman filter can be obtained as shown in Fig. 1.
The curves in Fig. 1 briefly show that the estimation
values of the extended Kalman filter are much better
than these of the linearized Kalman filter to ap-
proach the true values.
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The comparison between estimation results obtained by linearized Kalman filter and extended Kalman filter

ized Kalman filter. The reason is that x (z) of the
linearized Kalman filtering algorithm is usually not
as close to the true trajectory as x (z) is of the ex-
tended Kalman filtering algorithm. So, it shows the
performance of the extended Kalman filter is much
better than that of the linearized Kalman filter at
the aspect of satellite motion states estimation.
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Fig.2 Estimation errors of the linearized Kalman filter
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Fig.3 Estimation errors of the extended Kalman filter
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6 Conclusions

The extended Kalman filtering approach can be
used for state estimation of a nonlinear system such
as satellite motion states description. The simulation
results demonstrat that extended Kalman filtering
algorithm is much better than the linearized Kalman
filter at aspect of satellite motion states estimation.

As it is known that there are many nonlinear
filtering approaches which are better than the ex-
tended Kalman filtering approach for the satellite
motion states estimation, the other approaches,
such as UKF, PF, will be discussed in further stud-
ies.
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