Vol.1 No.2, June 2010

Journal of Measurement Science and Instrumentation

Sum No. 2

Meta-model Based Model Organization and Transformation of
Design Pattern Units in MDA

Chang-chun YANG(#K#)"*, Zi-yi ZHAOGKFZ5)° ,Jing Sun(#) 1)’
(1. School of Economics and Management , Nanjing University of Science and Technology , Nanjing 210094, China ;
2. School of Information Science and Engineering, Changzhou University, Changzhou 213164, China)

Abstract— To achieve the purpose of applying design patterns which
are various in kind and constant in changing in MDA from idea and
application, one way is used to solve the problem of pattern disap-
pearance which occurs at the process of pattern instantiation, to guar-
antee the independence of patterns, and at the same time, to apply
this process to multiple design patterns. To solve these two problems,
the modeling method of design pattern units based on meta-models is
adopted, i.e., to divide the basic operations into atoms in the meta-
model tier and then combine the atoms to complete design pattern
units meta-models without business logic. After one process of conve-
rsion, the purpose of making up various pattern units meta-model and
dividing business logic and pattern logic is achieved.

Key words — MDA ; PIM; design pattern; model organization
Manuscript Number: 1674-8042(2010)02-0183-05
dio: 10.3969/j.issn. 1674-8042.2010.02.20

1 Introduction

The Integration of Heterogeneous Systems has always
bothered the development of large-scale software. MDA
(Model Driven Architecture) is a framework for model
organization and management in the process of software
development proposed by OMG. It’s a new way to solve
the problem of the Integration of Heterogeneous Systems,
and allows the integration of different systems on different
middleware platforms. Its main idea is separating the tight
coupling relationship between the analysis and design of
business function and the implementation platforms, thus
minimizing the impact on the system from the changing of
technology and platform™’. For systems’ heterogeneity,
the authors use the idea of design pattern, upgrade the ab-
straction level of the systems, so as to design sub-system in
a unified way.

Design patterns use classes and methods in the object-
oriented language to achieve some program objective, they
are the “blade” of object-oriented technology', they can
provide reusable design solutions to object-oriented soft-
ware development and help to improve software reusabili-
ty and system maintainability”® . Apply it to the MDA and

* Received: 2010-04-01
Corresponding author: Chang-chun YANG(yjsywmycc(@126. com)

combine their advantages can improve development effi-
ciency, save development time and accelerate the develop-
ment of MDA.

However, the applications of design patterns in
MDA often face the following two issues.

1) Pattern disappearances: When instantiating the
design patterns, their implementations will change accord-
ing to the environment, eventually lead to the pattern dis-
appearances .

2) Pattern explosions: a complete development often
involves a variety of design patterns and multiple pattern-
unit automatic conversions” . Patterns are continuously
updating and developing, the number will be more and
more, finally, applying design patterns in the software
development will be an arduous task.

Aiming at the above two issues, Ref.[5] has adopted
a role-based modeling method, defined the role in the de-
sign patterns to independent class and separated the inde-
pendent class from the application class, then used a Role-
Of relationship to connect the two classes, thus achieved
the separation of business logic and pattern logic.

Ref.[5] gave the Meta-Model of Role-Of relation-
ship at the Meta-Model level, but the business logic and
pattern logic are at the model level, the definition of pat-
tern logic at Meta-Model level was not given. Ref.[3] ap-
plied one kind of design patterns as a whole unit to the de-
velopment process of MDA, achieved the definition of
pattern logic at Meta-Model level, and also realized the
combination-binding of business logic and pattern logic,
but did not achieve the combination-realization of pattern
units Meta-Model(PUMM). Ref. [6] presented a method
of subdividing the operations of model elements as atomic
mappings, this method can achieve combination of a vari-
ety of design patterns, automatically convert source model
which does not contain the design pattern to target model
that contains design pattern. Drawing on such thinking,
the authors can combine the PUMM and simultaneously
solve these two problems.

184 Journal of Measurement Science and Instrumentation

No. 22010

2 Meta-model

In the development process of MDA, modeling is an
important part. The quality of PIM directly impacts on
the conversion efficiency and quality from PIM to PSM.
A.

Large number of engineering practices show that, the
efficiency of Meta-Modeling based modeling is 10 times
higher than the UML based*', so the Meta-Modeling
based MDA has greater potential than the single UML
based MDA”. Meta-modeling is a mechanism used to de-
fine language in the MDA environment, its core elements
are: meta-meta model, meta model and modeling tool in-
tegration”’. As the core products of Meta-modeling, me-
ta-model’s construction is very important for the following
reasons: first, meta-model is used to define the language;
second, changing rules use themeta-model of source lan-
guage and target language to define the transformation.
The following part focuses on the Construction of PIM,
including its uilding foundation at meta-model level.

Meta-Model explicitly defines the elements of model-
ing language and their relationships, its model object is
language. OMG takes four-tier meta-model architecture,
M, tier corresponds to the objective world, M, tier is
model tier, M, tier is meta-model tier, M5 tier is meta-
meta model tier, lower is the example of upper.

1) MOF (Meta Object Facility) locates at the M; lev-
el, it is an OMG standard and the core technology which
can realize MDA. It defines the language of modeling lan-
guage. It is the standard language describing meta-model.

2) UML is the standard modeling language at the M,
level. It is defined by MOF and can be used to build PIM
and PSM. UML meta-model is the instance of MOF mod-
el. Core UML is platform-independent, so extended UML
language is needed when building PSM, the usual two
ways are as follows: UML Profile approach and meta-
modeling approach[g] .

3) UML Profile mechanism uses the graphic present-
ation and OCL text query. It is defined as a set of Stereo-
types, a group of Tagged Values, a group of Constraints.
Their function is defining a specialized variant of UML
for specific target. Stereotype-defined meta-model don’t
merge with original one, its extension of meta-model is on
the surface, and the relationship between the concept of
model abstract lexical extension and original concept is
only inherited but not associated, that is to say it can be
directly extended but define new association™ .

4) OCL is a query and expression language of UML,
as well as one part of UML standard, currently, it has be-
come a complete query language. Using OCL in UML will
make the models of system more complete and accurate”” .

3 The modeling support environment of de-
sign pattern

Using the idea of reusing design patterns from meta-

model level, the authors can take design pattern units as
pattern models and separate the pattern models with busi-
ness models. PUMM based on extended meta-meta model
of MOF, the authors should extend two meta-meta models
of Epattern and Erole to define PUMM* .

3.1 Epattern and Erole pattern meta-meta model

Epattern and Erole are the subclass of Classifier in
the MOF meta-meta model, Classifier inherits from Type
which is included in Package, and Package is used to orga-
nize meta-model. One instance of Epattern is a PUMM.
Erole defines the roles in pattern, one role is an Erole in-
stance. Eole can have multiple operations and attributes in
grammar by extending.

Epattern

Type Element
7AN

Package 1

0.1 -/endType
* *

Q
Erole b—{ Operation
é‘ 15 Property
1

*

Type Classifier
[]

_Associminn

1..* -memberEnd -association 0..*

Fig.1 Epattern.Erole pattern meta-meta model

3.2 The meta-model of RoleOf relationship

Role-Of is a dependency relationship from Role to
Class, Role is the role class in design pattern, and Class is
the application class defined with modeling language. A
role design pattern and business model has the function re-
lationship. A business model can be repeatedly bound and
it includes all the methods as well as properties in the
binding Role. RoleOf relationship can achieve the binding
of business model and pattern model after their separation
and can avoid the problem of pattern disappearances. The
symbol of this binding relation is dependency indicated by
virtual arrows added with a “bind” >

Epattern Erole Dependency Classifier
JAN
1 *
— i
H
(i Of) Role Class
-role -actor
[RoleOf |-

1.*1 IR

Fig.2 The meta-model of RoleOf relationship

4 The construction and transformation of
PUMM

The extended MOF meta-meta model has been given
earlier, next step is carrying out the subdivision and com-
bination of PUMM. The purpose of combined-conversion
is combing source model without design pattern to target
model with design pattern”’. Transformation rules are
defined in the meta-model layer, the combination process-
es are at the M, level, as shown in Tab.1. Using UML as

Vol. 1

Chang-chun YANG, Zi-yi ZHAO,Jing Sun 185

the model representation language, using OCL language to
describe the rules and constraints between elements so as
to enhance the expression of the dynamic modeling of
UML, using UML Profile to extend the model description
of a specific platform™ "’ Focus on the vertical model
organization shown in the Tab.1.

Tab.1 Model Organization And Transformation
Model level Source model Operation Target mode
MOF meta-meta Extend MOF Epattern.Erole
M; model meta-meta meta-meta
model model
Apply QVT
M, Meta-model transformation Struts
meta-model
rules
M PIM t;?r?s?grr?a\g{m Struts
1 2 PSM
rules
Apply QVT
M, instance transformation instance
rules

4.1 The UML extension of Observer pattern unit
meta-model

Take observer pattern for example. According to the
standard and simplified view of Observer pattern which
has been rewritten and without business logic, the authors
instantiate Epattern and Erole pattern meta-meta model,
so as to get the Observer PUMM shown in Fig. 3.

The contained meta-model elements are: Package,
Class, Association, Property, and Operation.

The core relations includes: Class2Class, Opera-
tion20peration, Class2Association, Class2Generalization,
Class20peration, and Class2Property. Operation includes
Operationl and Operation2, Property includes Propertyl
and Property2, this constraint is to avoid naming con-
flicts.

The contained four roles are: Subject, Observer,
Concrete Subject and Concrete Observer. They are the
roles of the Observer pattern, respectively extended to
tagged values in UML (Observer _ Class _ Subject, Ob-
server _ Class _ Observer, Observer _ Class _ Concrete
Subject, Observer _ Class _ Concrete Observer).

Then the elements of Observer pattern can be ex-
pressed in UML. Name meanings is: pattern name _ meta

6
class role name'® .

4.2 The combination of PUMM

Source model and target meta-model are both the ex-
tended UML meta-model, the class whose role of stereo-
types named Subject will transform into Observer pattern.
Take the operations such as add, delete, modify between
pattern elements as atom mappings, each atom mapping is
a velocity template, combing these atom mappings to
model transformation rules and inputting parameters from
users, then the model transformation code can be ac-

1 {Qbserver class Subject)) ————{ _{Observer class Observer]

1 Subject Observer 1

* 1 *

Operationl Operation2
* *
{_(Observer class ConcreteSubjecd _}

! ~(Observer cliss ConereteObserved _}

Concrete Subject

ConcreteObserver

1
1T

L+ 1‘,

1
[PropPertyl ! Association |———] PropPerty2 |
1 1

Fig.3 Observer pattern unit meta model
quired.
Tab.2 Atom mapping table
Source model Atom mapping name parameter
element
Class AddClass2Class/ ClassName,
DelClass2Class StereotypeName
srcClass, AddGeneralization/ SrcClassName,
tarClass DelGeneralization TarClassName
Class AddClass2Property1/ ClassName,
DelClass2Propertyl QropertyName, type
Class AddClass20perationl/ ClassName, OperationName,
DelClass2Operationl type, returnType , accessability,
srcClass, AddAssociation/ SrcClassName, TarClassName ,
tarClass DelAddAssociation/ ConstraintNode
srcClass, AddAggregation / SrcClassName,
TarClass DelAggregation TarClassName

Simply design the atom mappings table, as Tab. 2.
The first line of Tab. 2 indicates that the source model ele-
ment is Class, and target model element is the same Class,
parameter ClassName is target class name, Stereotype-
Name indicates stereotype name, this atom mapping
means adding or removing another class. The second line
means adding or removing inheritance relation between
two classes.

The third line means adding or removing properties
in the class, PropertyName is property name, type is
property type.

The fourth line means adding or removing methods
in class, OperationName indicates method name, type is
method type, returnType shows return value type, acces-
sability expresses the accessibility of approach.

The fifth line means adding or removing associated
class between two classes, ConstraintNode shows the con-
straints association relation, for example, one-to-many.

Identify all of the atoms according to the transforma-
tion rules, and then the authors can construct different
shift templates for different design patterns to meet
requirements through the way of combining or modifying
parameters.

4.3 The combination of Observer PUMM

The transformation rules of these pattern units meta-
model are as follows:

As shown in Fig. 3, its source model consists of a
Subject Class with an Observer _ Class _ Subject stereo-

186 Journal of Measurement Science and Instrumentation

No. 22010

type, so convert it to Observer design pattern structure ac-
cording to the transformation rules: (1) Create a class Ob-
server with construction type Observer _ Class _ Observer,
add Operations2 and insert a one-to-many association be-
tween Observer and Operation2; (2) Create class Concrete
Observer with construction type Observer _ Class _ Con-
crete Observer, add every operations of Observer and at-
tribute Property2; (3) Add a one _ to _ one association be-
tween property2 and Concrete Observer, add a one-to-
many association between methods and Concrete Observ-
er. (4) Create a model element Property, put in a shared
aggregation relationship between Property and Property2.
(5) Add an inheritance relationship between Observer and
Concrete Observer. (6) Create a class Concrete Subject
with structure type Observer _ Class _ Concrete Subject,
join in all the methods Operationl of Subject and add at-
tribute Propertyl. (7) Respectively add one-to-one and
one-to-many associations between Propertyl and Concrete
Subject, Operationl and Concrete Subject. (8) Put in a
shared aggregation relationship between Property and
Propertyl. (9) Add inheritance relationship between Sub-
ject and Concrete Subject. (10) Create a one-to-one asso-
ciation between Propertyl and Property2, so as to guaran-
tee that one Concrete Subject can correspond to many
Concrete Observer in an instance of the pattern model.

<Pyl version="1.0" encoding="UTF-8"?>
=xslstylesheet version="1.0" xxalns xsl="http:fharerw w3 org/l 999X SLITransform "=
=yslteraplate match="operation">
=xslelement narae="operation*">
<xslattribute naree="ClassName"=$ TarClassName</xslattribute=
<xslattribute name="COperationName"=$Operationtame=fxslattrbute=
<xslattribute name="type"=$Type=iwslattrbute=
<xslattribute name="retumType"=$RetumType<izslattrbute=
<xslattribute name="accessiility"=$ Accesshility=/uslattrbute=
<fyslelement=
=fxsltemplate=
=fyslstylesheet=

Fig.4 The XSL code of atom mapping AddOperation

=xslteraplate ratch="class">
=uslchoose=
=<xslwhen test="i@StereoType="Observer_Class_Subject'"=
=xsleleraent narae="class">
<yslattribute name="Subject">false</xsl.attribute=
<yslattribute name="TD"=<xslvalue-of select="@id">_1<fxslvalue-of=<fxsl.attribute=
=<xslattribute name="ClassNarae"=Observer<ixslattribute=
=<xslattribute name="StereoType"=COhserver_Class_Observer<ixslattrbute=
=fxslelement=
=fslwhen=
=hslchoose=
<ixslteraplate=
=xslteraplate match="class">
=xslchoose=
=<yslwhen test="J@ClassNare="Observer "=
<xslteraplate raatch="operation"=
<xsleleraent name="operation2"=
=<yslattribute name="ID"=<xslvalue-of select="@id">_2=fxslvalue-of=</xslattribute=
=<xslattribute name="ClassNarae"=Observer<ixslattribute=
=xslattribute name="OperationName"=Operation2=<fxslattrbute=

Fig.5 Parts of XSL code of PUMM

Then the atom mappings are got as follows: Ad-
dClass2Class, AddGeneralization , AddOperation, AddProp-
erty, AddAssociation and AddAggregation.

Each atom mapping is a velocity template wrote into
XSL document. Organize the atom mappings and input
parameters according to the above conversion rules, dif-
ferent XSL code files can be got, that is the conversion

code of different PUMM.
Fig. 4 and Fig. 5 respectively shows the AddOperation
XSL code and parts of PUMM XSL code.

4.4 The instance of pattern

When the construction of Observer PUMM has been
done, next step is instantiating it to Observer pattern
model. Decide the concrete form of Observer pattern ac-
cording to business logic, create model element E, remove
business logic B, mark E to ME, input ME and parame-
ters(such as the number of specific classes, specific meth-
ods and B)into PUMM, generate pattern model. Then
bind pattern model and logic model to get the complete
PH\/{ }ocated at the Ml level through the RoleOf relation-
ship™® .

5 Instance of PIM model construction

If a large supermarket has the online business and re-
al business at the same time, consumers apply for mem-
bership cards to own the right of accessing to the online
supermarket. When members login, the system sends a
welcome e-mail, displays the current visit-number of
members from the first one, verifies the address of mem-
bers, and expresses these results at the interface. Member-
ship is constantly being added, and member information is
also constantly increasing and changing and updating, and
the system itself will also have new needs, such as sending
a letter with coupons to the members within the vicinity of
20 miles away from the supermarkets, so that the system
needs to update data according to the changing, such
problems can be resolved by using Observer pattern.

Customer Y e] CustomerView
1D
[+getState() +display ()
T 2
}
| | | 1
<<bind>> WelcomeLetter| AddVerification| Coupon
| P s
| rdisplay () display () 11 JrisplayO
| I bWeLdisplay () +ADVdisolay) | | 1 lecpdisnlay() (@
: : <<bind>> <<bind>> 1] <<bind>>——
I
l“ | ——— ol
P " -a0 1 1 1
'''' ConcreteObjectl ConcreteObjec® ConcreteObjec’ | ®)
1D =rt
i"‘l:m;() a2 [+update () +update() +update()
Jﬂ‘;m | — ldisplay) +display () +display ()
. [+WLdisplay () +AD Vdisplay() +CPdisplay()
[+getState() I I
Subject Observer
+notify() +update ()

Fig.6 The PIM of member information service

Here the updates of member information view related
to the data layer and presentation layer, Customer is the
member information model, CostomerView defines an ab-
stract class used to display information, there are three
sub-classes to achieve their respective functions, which are
the business model, as shown in Fig.6(a).

Fig. 3 has shown the Observer pattern unit meta-
model, pattern model shown in Fig.6(b) can be got by in-
stantiating it, PIM showed in Fig. 6 can be got by binding

Vol. 1

Chang-chun YANG, Zi-yi ZHAQ,Jing Sun 187

the two models.
6 Conclusions

The constructed models are all meta-meta models and
meta-model located in or above M, layer, except for the
pattern model generated by instantiation and the business
model constructed by modeling language. The meta-model
of Epattern and Erole pattern is obtained by extending
MOF meta-meta model, Observer pattern unit meta-model
is got by instantiating the meta-model of Epattern and
Erole pattern. Then all of the meta-models share a same
meta-meta model, which makes them have common com-
munication base at the M, level and makes the mutual con-
version possible.

Therefore, the main modeling environment is meta-
model level, the design idea based on role is also from me-
ta-model level to reuse design patterns, apply design pat-
terns as complete units to MDA, then combine the pattern
units meta-model. The combination idea is: subdivide the
basic operations to indivisible atom, combine them into
transformation rules, form a variety of design PUMM.
Distinguish the business logic and pattern logic at the time
of combination, remove the part of business logic in mod-
el elements, thus, the combined PUMM is the model con-
tains only pattern logic and its instance is the pattern mod-
el completely not contain business logic. At last, bind the
two kinds of models by RoleOf relation, so as to achieve
the construction of PIM with separated business logic and
pattern logic.

The point is the construction of PIM and prior-period
combination of PUMM. The constructed PIM not only
contains a clearly identifiable design pattern but the pat-
tern is obtained by combination rules. The next step is to
achieve the conversion from PIM to different PSM in
Tab.1 on horizontal direction.

7 Acknowledgments

Yang Chang-chun and Zhao Zi-yi thank to MDA

based model transformation technology Research in Soft-
ware engineering, Wang Xue-bin, and MDA based design
patterns modeling and model transformation, He Cheng-
wan.

References

[1] Jin-kui Hou, Jian-cheng Wan, Yu-yan Zhang, 2007. MDA-
supported Model Transformation Approach. Computer Engi-
neering ,33(8).

[2] Alan Shalloway,James R. Trott write, Xiong Jie interpret,
2005. Design Pattern Precise analysis. Tsinghua University
Press, Beijing, p.200-202.

[3] Tian Zhang, Yan Zhang, 2008. MDA based design patterns
modeling and model transformation. Journal of Software, 19
(9):2203-2217. http://www. jos. org. cn/1000-9825/19/2203.
htm.

[4] MetaEdit Inc, 2005. Domain-Specific modeling with MetaEdit
+10 times faster than UML. White Paper.

[5] Cheng-wan He, Ke-qing He, 2006. Aroel-based approach to
design pattern modeling and implementation. Journal of Soft-
ware ,17(4) : 638-669.

[6] Xue-bin Wang,Quan-yuan Wu, 2006. MDA based model trans-
formation technology Research in Software engineering. Na-
tional University of Defense Technology .

[7] Hui Liu, Zhi-yi Ma, Wei-zhong Shao, 2008. Progress of Re-
search on Metamodeling. Journal of Software,19(6): 1317-
1327.

[8] Ying Zhou, Guo-liang Zhng, Xuan-dong Li, 2005. Uml Mod-
el Transformation Inmda Context: From Function Models To
Implementation Models. Computer Applications and Software.

[9] Cheng-jia Diao, 2007. UML System Modeling and Analyse
and design. Engineering Industry Publishing House, Beijing,
p.7.

[10] Xue-bin Wang, Quan-yuan Wu. Research and Implementa-
tion of Design Pattern-Oriented Model Trans formation. IC-
CGI,07.

[11] Li-ting Zhang, 2008. Research and Implementation of MDA
Development Pattern. Beijing Jiaotong University.

[12] M. Elaasar, LC. Briand, Y. Labiche, 2006. A meta model-
ing approch to pattern specific ation. In: Proc. of the 9th
Acn/IEEE Int’ I Conf. on Model Driven Engineering Lan-
guages and Systems(MoDELS2006). LNCS 4199, Berlin, Hei-
del berg: Springer- Verlag, p.484-496.

	M1052_p0081.pdf
	M1052_p0082.pdf
	M1052_p0083.pdf
	M1052_p0084.pdf
	M1052_p0085.pdf

