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Abstract — The main cause of dynamic errors is due to frequency re-
sponse limitation of measurement system. One way of solving this
problem is designing an effective inverse filter. Since the problem is
ill-conditioned, a small uncertainty in the measurement will cause
large deviation in reconstructed signals. The amplified noise has to be
suppressed at the sacrifice of biasing in estimation. The paper pre-
sents a kind of designing method of inverse filter in frequency domain
based on stabilized solutions of Fredholm integral equations of the
first kind in order to reduce dynamic errors. Compared with previous
several work, the method has advantage of generalization. Simula-
tions with different Signal-to-Noise ratio (SNR) are investigated.
Flexibility of the method is verified. Application of correcting dynam-
ic error is given.
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1 Introduction

The problem of correcting dynamic characteristic of
measurement system can be traced back to some researches
like recovery of ideal instrumentation, correcting frequen-
cy characteristic of instrumentation, reconstruction of in-
put signals, correction of signals, compensation of dynam-
ic error, method of deconvolution and technique of inve-
rse filter . The application of these methods can get a
result more accurately reflecting the true value. Unfortu-
nately, the problems is often ill-conditioned, which means
the small uncertainties in the output signal, caused by the
noise, lead to big differences in the estimated input. The
amplified noise has to be suppressed at the sacrifice of bi-
asing in the estimation. Several algorithms were proposed
to compensate the effect of the measurement system with
simultaneous noise suppression”>""’. Most of deconvolution
in the time domain is based on Van Cittert’s method? ,
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and several methods have been extensively studied and
used. However Van Cittert’s method is only a particular
case of Bialy’s iterative algorithm:’”. Recent papers >
present their solutions to deconvolution in the time doma-
in, but they can not be applied in the measurement of
transient signal or non-stationary process. Most of the de-
convolution in the frequency domain involves the design of
an inverse for the transfer function. These inverse filters
are based on an optimization criterion for the selection of
the iteration parameters in the optimal compensation de-
convolution technique*®' . They are often constrained by
fixed form of inverse filters. The paper deduces a group of
inverse filters based on stabilized solutions of Fredholm in-
tegral equations of the first kind in order to correct dy-
namic characteristics of measurement systems or reduce
dynamic errors. Compared with previous work, it is more
flexible in the process of designing inverse filters besides
these advantages like simplicity, a priori knowledge of the
data’s statistics is not required and relatively less knowl-
edge of the signal’ s characteristics is required. At the
same time, the paper gives several simulations with differ-
ent SNR and an application of correcting dynamic error.

2 The principle of quasi-static measure-
ment and dynamic measurement

2.1 The principle of quasi-static measurement

Assuming a measurement system is linear system.
The principle of quasi-static measurement is to establish
such a measurement system which is approximately sati-
sfied with non-distortion transfer to measured signal ac-
cording to priori knowledge, i.e. working frequency band
width of measurement system is more than maximum fre-
quency band width of measured signal or physical value
variation and its phase characteristic is satisfied with linear

Project supported: The paper is sponsored by National Natural Science Foundation of China (No. 50675211 ); Natural Science Foundation (No.
2009011023) ; Returned Overseas Graduates Foundation (No. 2008067) of Shanxi Province in China

Corresponding author: Zhi-jie ZHANG(zhangzhijie@nuc. edu. cn)



308 Journal of Measurement Science and Instrumentation

No. 4 2010

phase. Its principle of quasi-static measurement is demon-
strated in Fig. 1.
H(®)

k X&)
TY:Q; 10}
i Q)g
, /\ ’

N
N
; 0
0 ! \5 (D(]CO]) 0f %
= e
[

Fig. 1 Principle of quasi-static measurement

x(7)

For a quasi-static measurement system, the relation-
ship between input and output in time domain is
y(t) = kx(t — ¢y),
So, the relationship between input and output in frequency
domain is
Y(”) = RX(”)e".

2.2 The principle of dynamic measurement

Assuming a measurement system is linear system.
The principle of dynamic measurement is the process of
measurement under the situation that the measurement
system is not satisfied with the principle of quasi-static
measurement mentioned above. The output of the mea-
surement system should be corrected because the effect of
the measurement system on the input is to change the
complex amplitude of each of the frequency components
of the signal measured. Its principle of dynamic measure-
ment is demonstrated in Fig.2.
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Fig.2 Principle of dynamic measurement

For a dynamic measurement system, the relationship
between input and output in time domain is

w(2) = jlhu — )a()de,

So, the relationship between input and output in fre-
quency domain is _ »
Y(”) = X(&”)H(e").

3 Correction method of dynamic error re-
sult from system limitations

The problem of dynamic characteristics correction
will be taken as solving stabilized solutions of Fredholm
integral equations of the first kind

jfhu,f)x(r)dr — A = (),

< t<t,. (1)
Where x(7) expresses continuous input signal in measure-
ment system; y(7) expresses continuous output signal in
measurement system; A (z,7) expresses pulse response of
measurement system; A, expresses arithmetic operators of
pulse response of measurement system; z,, T’ expresses
beginning time; ¢, , T, expresses ending time.

According to the principle of solving inverse prob-
lems in mathematics, a general stabilized method of doing
deconvolution is constructed. Select space
F,=W3[T,,T,], and take the square of integrable func-
tional form with derivatives of ¢ order in the region of
[T,,T,]. Select stable functional

.

0@ = [" Y@@ e, @

L =0
where qq, (7) is selected known constants or functions;
When r = 0,1,-*-,q — 1,qq,(z) , should be greater than
or equal to zero; when r = ¢,qq, () should be greater
than zero™ . Then the stable solutions 2 should make the
following smoothing functional a minimum

Mz,yl = Az -yl +22(zx) =

Jiz {J:}lu’ﬂi(f)df — () de +

1

o -
A S a0 () (P, ©
T, =0 dz
Where M' [, y] expresses smoothing function.

For a linear time invariant measurement system, the
model of correction principle of dynamic characteristics is
shown in Fig.3. where: x(n) expresses discrete sequence
of input signal in measurement system; y(7) expresses dis-
crete sequence of output signal in measurement system;
n, () expresses noise of output channel in measurement
system; x(7) expresses estimated sequence of input signal
in measurement system; F (%) expresses discrete transfer
function in measurement system; K (%) expresses discrete
inverse filter used for correcting dynamic characteristics in
measurement system.
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Fig.3 A general model of correction principle of dynamic characteristics

T. a
Using stable functional Q(x) = J ? DA (dx)de,

T, v=0
A=1, then
M lz,y] =l[Ax —yI” + Q) =
| Az =yl +

T, 4 )
| "> A @irde.
Tl r=0

Where d'zx is expression of r -order difference of = . It
can be expressed as

4)
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LM[ﬂﬂ%y(ﬂ)] =
Tz[y(n)* Zh(m)x(n*m)]z (5)

n=0

Tzq] 2%,[2@(7)1)32(71 —m) .

r=0 n=0 m
Where L is an operator; ¢, (n) is a r-order difference

alignment with a length of N .
The same expression in the frequency domain is
LM [X(k),Y(k)] =
T N-1

i Z | Y(k) — HR)X (k) I? ©)

N-1

SN TG R) P

r=0 k=0

2|~3

J LM [X(k), Y(k)]
3X(/€>

%Z[Y(/e) ~ H(R)X (&)~ H (k)] +

M<

~

MQ 21

A1 C (k) PX(R)I. (7)
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If

L~

LM [X(%),Y(k)]
d X(k)

=0,

then,
—2Y(E)H (k) +2 | H(k) ’X(k) +

2§] A 1 C(k) I’X(R) = 0. (8)

Thus, -
X(k) = Y(k) H (%) -
| H(R) 1P+ D4, 1 (k) 1P

r=0
Y(k)K(k). 9)
Where H' (%) is conjugate expression of H(%) and ¢, (n) is
a r-order difference series with a length of N
co(n) =11,0,0,0,-+,05 |,
a(n) =cg(n) —cy(n—1) =

%1, _1,0909“"01\’—1}9
o(n) =c(n) —c(n—1) = (10)
%1, _2,1909“'701\’—1}9

cs(n) =c,(n) —c,(n—1) =
1, =3,3, = 1,-,05 |
The Discrete Fourier Transform (DFT) of ¢,(n) is
Cy(k) =DFT[cy(n)] =1,

for# =0,1,--,N —1. (1
Thus,
| Cy(k) I” =
Next,
C1</€) :DFT[C()(H) - C()(n - 1)] =
21
lfexp(fJNk) =
251n exp(]ﬁ) (12)
Thus, | Co(k) P = dsin® T (13)

N

Next,
C, (k) :DFT[CI( )—c(n—1)] =

2sin =% eXp(J \])ﬂ —exp(—j 7\/3)

4sin’ ﬁexp " ( W) (14)
Thus, Cb) P = 16sin' (15)
Next, C;(k) = DFT[c;(n) —c;(n —1)] =
Asin l/eexpz(j l\/;){l —exp(— ] %ﬂfz)} =
4sin’ T][\/?exp (G (16)
Thus, | C3(R) 17 = 64sin® nﬁk 17)
In general, then
2 2 TC/Q q
| C,(k) I” = (4sin N (18)

for# =0,1,--,N — 1.
So, a group of inverse filters in frequency domain K (%) ,
can be expressed by

K(k) = H (k) =
VHE) 124 D22, 1G(8) 12
=0
H(k)
| H(R) 12 + {Ag + Ardsi? Vk + s (4sir? LI,)Z S Ay (4sm2 N )
(19)
Where A,4,,-",4, and g can be selected or optimized

parameters
4 Comparison with other inverse filters
The following results are special cases of formula

(19).
1) Using stable functional

Q(z) —JTJC dr,
then,
__ H®
K(®) = | H(k) 1P+ 27 (20)

where A is adjustable parameter. This is a compensating
method of inverse filter
2) Using stable functional

0G) = [ (@arr,

then,

H (k)
HGE) P+ 162sin'
where A is adjustable parameter and N is a length of dis-
crete points.
This is an inverse filtering method with one
parameter”’
3) Using stable functiondl

0G) = j ST (@)

1r0

K(k) = (1)
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then, 12
K(k) =
H' (k) 0.8
: . (22
|H(/€) |2+3\L(/€) ‘4+7‘L(/€) ‘2+/1 ( ) g \ — Input

Where &, 7, A are adjustable parameters; L (%) is the Fou- £ 04 \ — Output
rier transform of the second-order backward difference se- \
quence. 0 \

This is an inverse filtering method with three pa-
rameters’® . 0 200 400 600 800

4) Using stable functional Time =)

0 (x) - J 2 ( d'r )2 dr, Fig.250 Input and its estimation of the output in the Fig.4

then, 15

K(k) =

H (k) _ g 1.0+
| H(k) I? +/111+4>1n kL (i 2"Vk)2+ -~+(4sin2%)qf E o5k :g‘gt‘;fut
(23)

Where A and ¢ are adjustable parameters. 0

This is an inverse filtering method presented by au- 05
thor™™® . ’ 200 400 600 800

Time (Us)

5 Simulations Fig.6 Input and output of the system. Normally distributed noise (its

In order to illustrate the effectiveness of the method
mentioned above, a low pass measurement system with a
high-bandwidth input signal is studied. The system func-
tion of simulated low pass measurement system is

(10°n)°
H(S) = S*+6mx10°S + (10°7)°
If the sampling period is T, , the number of sampling
point is N, then the DFT of H(S) is given by

H(k) _ 2 (1057'E)2

4
(JNT 10 X(JNT
for # = 0,1,-,N — 1.

The simulation results are shown in Fig.4~Fig.9.
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Fig.4 Input and output of the system. Normally distributed noise (its
SNR is 40 dB) is added to the output

6 Applications of correcting dynamic error

The method presented by the paper is successful in
correcting dynamic characteristic of sensors and measure-
ment system. Figure 10 is a real example in dynamic cali-

SNR is 26 dB) is added to the output
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Fig.7 Input and its estimation of the output in the Fig.6
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Fig.8 Input and output of the system. Normally distributed noise (its
SNR is 20 dB) is added to the output

bration experiment by use of step pressure generator.
7 Conclusions

The paper presents a group of inverse filters in fre-
quency domain based on the principium of solving inverse
problems in Mathematics in order to correct dynamic error
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