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Abstract — The problem of H.. stability analysis and control synthesis
of switched systems with delayed states under arbitrary switching
laws is considered. By means of Lyapunov function and linear matrix
inequality tools, sufficient condition of H.. stability is presented in
terms of linear matrix inequalities. Furthermore, the robust H.. con-
trol synthesis via state feedback and output feedback is studied. Fi-
nally, a numerical example is given to demonstrate the effectiveness
of the proposed method.
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1 Introduction

Switched systems are an important class of hybrid
systems consisting of a family of subsystems and a switch-
ing law that specifies which subsystem will be activated
along the system trajectory at each instant of time'"?' .
During the last decade, switched systems and switching
control have gained much attention because this field is
not only of practical importance, but also academically
challenging. Many real-world processes and systems, in-
cluding chemical processes, computer controlled systems,
switched circuits, and so on. Moreover, switched systems
find considerable applications in many other engineering
fields™*'.

As is well known, time delays are very common phe-
nomena in many real control systems which are a great
source of instability and poor performance. During the
past decades, the stability of control systems with time de-
lay has received considerable attention. However, few ex-
istent results for switched systems have considered the fac-
tor of time delay. Ref.[6-8] established the necessary and
sufficient criteria for controllability and reachability of
switched linear systems with delayed control input.
Ref.[9] studied the stability and L, gain analysis for
switched linear systems with time delay. On the other
hand, H.. control is one of the most active subfields of re-

search and H.. performance is also an extremely important
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performance. Unfortunately few results are concerned
with H.. control of switched systems. Ref.[10] and [11]
have studied disturbance attenuation of switched systems.
Several other papers such as Ref. [12-14] were also dedi-
cated to the study of H., related problems for some kind of
hybrid systems. Ref.[15] has studied robust H.. control of
switched linear systems with norm-bounded time-varying
uncertainties by using multiple Lyapunov functions meth-
od. Ref.[16] deals with the stabilization and robust H..
control of discrete switched system with time delay based
on the average dwell time method.

This paper studies H.. stability analysis and control
synthesis of continuous-time switched linear systems with
delayed states by linear matrix inequality approach togeth-
er with Lyapunov function method. Firstly, by construct-
ing linear matrix inequalities via Schur complement formu-
la, a sufficient condition of H.. stability is presented in
terms of matrix inequality. Next, sufficient condition of
H.. control is given under state feedback and output feed-
back. The results are formulated as linear matrix inequali-
ty conditions which can be partly considered as extension
of existing results for linear time-invariant time-delay sys-
tems and partly considered as extention of existing results
for switched linear systems without time delay.

The paper is organized as follows. In Section 2 we
present preliminaries including system description, as-
sumption and definition. Main results are presented in
Section 3. A numerical example is included in Section 4.
Finally, Section 5 briefly concludes the work.

2 Preliminaries

We consider the following switched systems with
time delay:

2(t) = Ax(t) + Ayx(t —d) + Bw(t) + Byu(t),
z(t) = C,x(t) + Dw(t),
(1) = G (1),

x(t) = o(r) t€[~d,0]. (1)
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where x(t) € R" is the state; u(z) € R" is the control in-
put; w(z) € R" is the exogenous disturbance input which
belongs to L,[0,90]; 2(z) € R” is controlled output;
v(t) € R is the measurement output; ¢(+) is a initial
function on [ —d,0] and d == 0 is time delay of state; o:
Zy, = M = {1,2,--,m| is the switching signal, more-
over, o = 1 means that the 7 th subsystems is activated;
A;,A;,B,;,B,;,C,;,C,; and D; are constant matrices of
appropriate dimensions.

Without loss of generally, we make the following as-
sumption.

Assumption: C,; (Y € M) are all full row rank ma-
trices. Let u = K,x, then the closed-loop system of Eq.
(1) is

2(t) = (A, + B,K )x(t) + Ayx(t —d) + Byw(z),
2(2) = Ca(t) + Dw(1). (2)

Applying output feedback control © = F;y, we get
the closed-loop system

2(1) = (A, + BL,KCy)x(t) + Ayx(t —d) + Bw(t),
2(t) = Cja(t) + Dw(t). (3)
We first consider the non-input system of
(1) = Ax(t) + Ayae(t —d) + Bw(1),
2(1) = C2(1) + Dw(z). 4)

Definition: Given a constant ¥ > 0, the switched sys-
tem (4) is said to be stabilizable with H.. disturbance at-
tenuation ¥ via switching if there exists a switching rule o
such that under this switching, it satisfies

1) System (4) with w = 0 is globally asymptotically
stabilizable.

2) With zero-initial condition x(0) =0, || z(¢) [/ ,<
¥ |l w(2) Il , holds for all nonzero exogenous disturbance
input w(z) € L,[0,00].

3 The main results

Theorem 1: Given a constant ¥ > 0, the switched
system (4) is stabilizable with H.., disturbance attenuation
¥ for any arbitrary switching sequence if there exist sym-
metric matrices P > 0 and § > 0 such that the following
matrix inequalities

A'P+PA, +S PB, C|, PA,]
Bi.P -y DI 0
<0,i€ M,
Cy, D -y 0
L AP 0 0 -5SJ

(5)

are satisfied.

Proof: If there exist symmetric positive matrices P
and S such that Eq. (5) holds. We construct the following
Lyapunov function

V(z) = () Pe(s) +j QS

a

Then, V(x) is positive-definitive. The time derivative of
V() along the trajectory of Eq.(4) with w(z) = 01is

V() =2" (1)Pe(2) +7 (£)Pe(2) +
2 ()Se(t) 2 (t —d)Se(t — d) =
r,m }T [A;"P+ PA, + S PA(,,} V(t) }

z(t —d) ALP - Sl tx(t —d)

It can be easily verified from Eq. (5) that V(x) < 0 hol-
&. Therefore, V(x) decreases along solutions of system
(4), which implies asymptotic stability.

In the following, we verify disturbance attenuation
property. For this sake, let us introduce the performance
index

J. = JT(}’ "2l — w'w)dr,
0
since 2(0) = 0, for Y w € L,[0,°°] we can get

-]r :[;(7 lsz — '}’wTa) + V([))dt - V(-T(T)) <

[[Ortee = o + V()
0
Where
V(z) =27 (¢)(PA, + ATP)x (1) +
22" (1)PAGa(t — d) + 22" (1) PBLw(t) +

2 ()Se(t) =2 (t —d)Se(t — d) =

2(1) 17"TA'P+PA +S PB PA; 2(2)
w(t) B'P 0 0 w(t)
x(t —d) AP 0 -Sltalt—d)

V- e =
(1) 7 CLC, v CLD, 0 (1)
w(2) y'DiCy; y'DID, =7 0 w(2)
x(t —d) 0 0 x(t —d)

By Schur Complement Formula, matrix inequality (5) is
equivalent to the following:
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AP+ PA, + S+ y'Cl.Cc,, PB +y'CID. PA,

B/P+ y'D/Cy; y'DID, =yl 0
ALP 0 -S
< 0.
Then
J. <J (r''z = y'w+ V(t)d =
0
x(t) 3 x(t)
J o) | | | @ |d&<o,
0 Bl
x(t —d) 2(t —d)
where

AP+ PA, +S+7'CiC, PB +7'CLD, PA,

B'P+ 7 'D/C; y'DD, -y 0 |,

1, =
ALP 0 -S
It can be shown that for ¥V« > 0,
JTzT%lt < Yzjerwdt < yZJ o' adr
0 0 0
Hence, | z(2) |, < vl w(2) |, for Yw € L,[0,00] .
This concludes the proof.

Theorem 2: Given a constant ¥ > 0, the switched
state feedback H.. control of system (2) is feasible if there

exist symmetric matrices X >0, Q >0and Y;, (i € M)
such that the following linear matrix inequalities

(AX+B,Y)' +AX+B,Y, +Q B, XC, A;X
Bi, -y D' 0
<0
C,;X D - 0
XA 0 0 Q
(6)

are satisfied. The state feedback gain matrices are given
by

Proof: By theorem 1, the switched state feedback H..
control of system (2) is feasible if there exist matrices P
and S such that

A + ByK,))T™P+ P(A; + ByK;) + Q PB,; CI. PAy,

BiP -y DI 0

<0,
Cy; D -y 0
ALP 0 0 S

(7)

Multiplying the above inequality on both sides by
diagi{P™"',1,1,P'} . Denote X = P!, Y, = K,P"" and
Q = P'SP"' , then matrix inequality (7) is equivalent to
matrix inequality (6). This concludes the proof.

Theorem 3: Given a constant ¥ > 0, the switched
output feedback H.. control of system (3) is feasible if
there exist symmetric matrices X >0, Q@ >0and U,, V;,
(i € M) such that the following linear matrix inequalities

(AX + ByUGCy)T + AX + ByUGy, +Q By, XCf; Ay

B -y D 0
CiX D -y 0
XAL 0 0 Q
<0 (8)

are satisfied. The output feedback gain matrices are given
by F, = UV, and V,C,, = C,X.

Proof: By theorem 1, the switched output feedback
H.. control of system (3) is feasible if there exist matrices
P and S such that

(A; + ByK,Cy )P + P(A; + ByF.Cy;) + Q PB;;  Cf, PA;

BLP -y D 0
Cy; D, -7 0
ALP 0 0 S
<0 9)

Pre- and post-multiply the left-hand side (9) by diag
{P'",1,I,P'"|. Notethat X = P 'andQ = P 'SP',
then we get

(AX + ByKCX)T + AX + ByFCuX +Q By XCl AgX

Bl /e 0
<0

Ci.X D, -7 0

XAL 0 0 Q
(10)

Because C,; is full row rank and X is positive-definite, it
follows from V.C,;, = C,,X that V; is also full rank, and
thus invertible. Because V.C,;, = C,,Xand F, = U,V,' ,
we have UC,, = F,C,,X. Replacing UC,;, in (8) by
F.C,;X gains matrix inequalities (10). This concludes the
proof.

4 Numerical example

Consider the following switched systems composed of
two subsystems:

(1) = Ax(t) + Aya(t —d) + Biw(t) + Byu(t),

2(1) = Cya(t) + Dw(1),
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y(t) = Cua(t) (i =1,2). based conditions. Both the cases of state feedback and
output feedback have been considered. All our results in
where this paper are expressed in terms of linear matrix inequali-

-2.5 1 0.2 0.6
A, = , Ay = ’
0 - 3. 0.6 0.5

1 0.6 0.2
= ’ BZI = ’
0. 0.4 0.1

-1.7 1 1 1
’ AdZ = ’
0 - 0.5 1.
0.7 0.5 0.4
- 9 B22 - 9
0. 0.8 0.3
0.4 0.9
C, = , Cp = [0 ﬂ,
0.6 0.7

D2 = 0.25.

Time delay d = 0.5 . Given ¥y = 0.5, by using theorem 3
and Matlab-LMI toolbox, we can obtain the following
symmetric positive-define matrices

X - [ 0.0688 —0.0763} 0 - { 0.1927 —0.0057}
—L-0.0763 0.2882 17 = L-0.0057 0.2157 1
and matrices
0.0057 0.028 0.0063 0.008
U] = ’ U2 = ’
0.0156 0.034 0.0077 0.008
0.0247  0.0459 0.6389 —0.4%
Vl = 5 Vz == .
—0.1264 0.0023 0.3926 —0.281

Then, the output feedback gain matrices are

0.3921 0.031 —0.3648 0.6098
’ FZ =
0.

F, = .
1 0.6828 0.010 —0.3958 0.6637.

Therefore, the switched system with time delay is as-
ymptotically stable with the expected disturbance attenu-
ation performance for arbitrary switching.

5 Conclusion

In this paper, the problem of H.. stability analysis
and control synthesis of time-delay switched systems has
been addressed. The existence of a Lyapunov function to
ensure H., stability is proved to be equivalent to LMI-

ties, which can be easily solved by Matlab Toolbox .
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