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Model identification of continuous stirred tank reactor
based on QKLMS algorithm
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Abstract; The continuous stirred tank reactor (CSTR) is one of the typical chemical processes. Aiming at its strong nonlinear

characteristics, a quantized kernel least mean square(QKLMS) algorithm is proposed. The QKILMS algorithm is based on a

simple online vector quantization technology instead of sparsification, which can compress the input or feature space and

suppress the growth of the radial basis function (RBF) structure in the kernel learning algorithm. To verify the effectiveness of

the algorithm, it is applied to the model identification of CSTR process to construct a nonlinear mapping relationship between

coolant flow rate and product concentration. In additiion, the proposed algorithm is further compared with least squares support
vector machine (LS-SVM), echo state network (ESN), extreme learning machine with kernels (KELM), etc. The

experimental results show that the proposed algorithm has higher identification accuracy and better online learning ability under

the same conditions.
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0 Introduction

The continuous stirred tank reactor (CSTR) is a
highly nonlinear chemical reactor and is widely used
in the chemical process industry including chemical
reagents, fuels, synthetic materials, etc™. It is
difficult to obtain an accurate mathematical model of
the CSTR due to its features of nonlinearity and time-
varying. In addition, if the system model is not
accurate enough, the analysis, prediction and control
of the system will be affected”’. Hence, it is

necessary to construct a nonlinear dynamic
identification model based on the input-output data of
the system, and further design a controller based on
the identification model to realize the adjustment and
control of the CSTR processt®™.

In recent years, neural networks, as an effective
artificial intelligence method, play an important role
in the identification and control of chemical
processes. In Refs. [8] and [ 9], Chen et al applied
back propagation (BP) and generalized radial basis

function (RBF) neural networks to CSTR system
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which

identification accuracy. A dynamic recurrent neural

modeling, effectively  improved  the
network, echo state network (ESN)., was used in
CSTR process, and the identification effect was

d™1, In order to overcome the

significantly improve
shortcomings of the feedforward neural network
which is easy to fall into the local minimum, a
nonlinear autoregressive exogenous input ( NARX)
identification method based on extrem learning
machine with kernel (KELM) was proposed and
applied to the modeling of CSTR, which obtained

[ However, when the

high identification accuracy
training data increases, the computational complexity
of the neural network also increases, which brings
inconvenience to subsequent learning.

In order to further reduce the computational
complexity and improve the online learning ability.,
relevant research in the field of online kernel learning
algorithms has attracted wide attention of
scholars™*™ . In Ref.[15], Li et al proposed a
kernel least mean square (KLMS) algorithm with

low computational complexity and good robustness,
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which has been effectively used to the single-step and
multi-step prediction of online traffic flow. Chen et al
put forward a quantized kernel least mean square
(QKLMS) algorithm"®', which is different from
sparsification and uses the redundant data to update
the coefficient of the closest centre. In Ref. [16], the
algorithm was successfully applied to the prediction
of chaotic time-series.

Therefore, for the identification of CSTR with
strong nonlinearity features, we propose a novel
identification method using QKLMS based on kernel
further
In addition, to verify the

learning  algorithm to improve  the
identification accuracy.
effectiveness of the proposed algorithm, the
identification experimental results are compared with

the existing methods under the same conditions.

1 QKLMS

QKLMS is
algorithm. Firstly, giving the training data {x;,y;} €
R"XR'(;=1,2,*,N), we can define X € RV*" as
the input matrix and Y € R¥*! as the output matrix.
When the ith data set is obtained, the online update
of the learning algorithm is performed on the basis of

an online sequence estimation

the estimation of the previous (i—1)th data (denoted
as fi—1) to obtain the estimated value of the current
nonlinear mapping relationship f, recorded as f;.
The nonlinear mapping between the input and output

data is expressed as

N
f(x) = Ea[/e(x;,x)’ (1)

i=1
where the nonlinear mapping relationship is built by
function

the linear combination of the kernel

constructed by the corresponding support vector x;.
Based on the QKLMS algorithm, firstly, x; needs
to be mapped to the high-dimensional feature space,

Le ¢:x>¢p(x)EF R, and the kernel function
is defined as

k(x;ix;) = ¢x)Tdp(x)). (2

Then the kernel matrix K=@®"® that satisfies the
Mercer condition can be obtained, where @=[¢(x,)

¢(xz) ¢(xN)]-

In the experiment, the kernel learning algorithm
will use three kernel functions as follows.

1) Polynomial kernel
k(x,'axj) - ((x, . x]') +1)p9 (3)

where p is the order of the kernel function.
2) Sigmoid kernel

k(x[9x]) - tanh('{/(xi . x]) +C) ’ (4)

where v is the input weight and ¢ is the offset of the
kernel function.

3) Gaussian kernel

k(x;sx;) :*M, (5
B 20"
where 6(6>0) is the kernel width.

The KLMS algorithm extends the linear LMS
algorithm into the feature space F. The input ¢(x;)
of the high-dimensional nonlinear feature space is
denoted as ¢;. For the sequence data {¢;, vy, }, the
LLMS algorithm is applied, then

on — 07
N €; :y[*a)};l(bi’ (6)

[(Di =w + TF:“I’; ’

where ¢; is the prediction error when the 7/th data
have been acquired, 7 is the learning rate, and e; is
the estimation value of weight vector in the feature
space.

Due to fi=w!¢( + ), and according to Eq. (6) and
property ¢ (x) =~k (x, * ), the KLMS algorithm in
the original space is

Jfo = 09
e = Vi *f‘,'fl(x,')a (7)
f‘i - f‘ifl +778,»k(x," ’).

Eq. (7) shows that the KILMS algorithm is
essentially equivalent to a growing RBF network,
i. e. » as each new data are acquired, a new core unit
centred on input x; is assigned, and 7 is its
coefficient.

The QKILMS algorithm is obtained by quantifying
the feature vector ¢, which is embodied in the
weight update equation in Eq. (6). At this point, the
KLMS algorithm on Eq. (7) is

Jo=20,
N e :yMl‘if‘,'—l(x,)a (8)
fi=fa ‘|‘7ka QLx:]s )

where Q[ * ] is the quantization operator in the
original space U, and additionally, let x,(:) =Q[ x; ].

The key to the QKLLMS algorithm is how to design
the vector quantization technique, i. e. » how to select
the data as a codebook vector and how to find the
nearest codebook vector representation. To adapt to
online learning, the codebook vector needs to be
trained directly from the online data to make it grow
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adaptively. Let D; be the matrix of all codebook
vectors when the ith data are obtained, and D! be the
codebook vector of the elements of the jth column of
the matrix. In addition, the data distance in the

metric space 1s

G — )" (b — ¢ =

[E

2= 2kCx; o x, :Jz—zexp(_L"zoz_x;) (9

|| r is the norm in the feature space F.
Eq. (9) indicates that the distance in the feature
space F monotonically increases as the distance of U

where ||

in the original space changes.

Therefore, the quantization threshold can be
defined by Eq. (9), then

e = Jz—ZexpGj) , (10)

where ey = || X, —X; | is the quantization threshold in
the original space U and || x, (i) —x; [| <ey. In
addition, when ey=0, it is the KLLMS algorithm.

In summary, the specific steps to implement the
QKLMS algorithm are as follows:

Step 1: Give the data sets {x; €U, y;}, i=1,2,°*

Step 2: Training phase. Let >0, 6=>0 and ey, >0,
when ¢ =1, let the initial value of the codebook
vector matrix (the set of data centre) D, =[x, ], and
the coefficient vector &, :[ﬂylj.

Step 3: Let i=i+1, L=size(D,—;), the model

output is calculated by

Za k(DL x) (1)

the jth element of the
coefficient vector obtained when the ith data arrive.

where @, represents

Step 4: Calculation error is
6,':yi_5)9 (12

and the minimum distance between the input vector
and all codebook vectors is calculated by

d(x;sD_;) = mm | x;—Di, ||. (13)
\]\

-1 )<6U, the codebook vector

Le s D; - D,‘—l.

Quantizing x; to the nearest centre, by updating the

Step 5: If d(x;sD

matrix remains unchanged,

coefficient vector of the nearest centre, that is

*

ol =al o (14)
where the index of the centre is j* =arg mm | x;,—

1=5<1
D, .

Otherwise, setting x; to the new codebook vector

and updating the coefficient vector, that is

D; = [D;.x:],
(15)
o = Lo,
Step 6: Iteratively calculate Step 3— Step 5 until
all training data are learned in turn.
Step 7:
model, given the testing data, the final model output
is calculated by Eq. (11).

Testing phase. Based on the trained

2 Experiment of CSTR process
2.1 CSTR process

CSTR is a typical nonlinear reaction process, and
its basic structure is shown in Fig. 1. In this paper,
the CSTR chemical process with exothermic reaction
feature is an irreversible reaction (A—B) process.,
and the producing heat will slow the reaction down.
By introducing a coolant flow rate ¢., the
temperature can be varied and hence the product
concentration Cy can also be controlled.

Cx q Tt

b

Cs q T

N
q. Te q. T.
—— ——

Fig. 1 Basic structure of CSTR

The dynamic nonlinear differential equations of the
CSTR are expressed as

dc L . E
=L )~ KGiexp(— )+ (1)

dT 1 ( AH)K()CB L

oy T D e e xp(— 57 )+
0:Cye

bt [ 1= exp( - S )]a—n. an

where q is the process flow rate; C, is the inlet feed
concentration; T; and T4 are the inlet feed and
respectively; T is the
addition, the
remaining chemical reaction parameters are detail
listed in Ref. [17].

coolant temperatures,

temperature of the product. In

2.2 Data collection and model building

During the CSTR process, when the reaction
reaches equilibrium, the product concentration is
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Cy=8.36X10"% mol/L,
temperature of the product and the coolant flow rate
are T=440. 2 K and ¢.=103. 4 L/min, respectively.
On the basis that the coolant flow rate q. is a steady

simultaneously, the

state value, the randomly distributed white noise in
the interval [ —0. 002,0. 002 ] is added to enhance the
stability of the model training.

The coolant flow of the CSTR input is shown in
Fig. 2. Among the obtained 4 000 input-output data,
the first half is used as the training set, and the
remaining part is used as the test set. In addition, all
data sets need to be normalized on the interval [0,1].

T T T T T T T

3107

1000 1500 2000 2500 3000 3500 4000
Sample point

Fig. 2 Coolant flow q. of CSTR input
Assuming that the CSTR system model is
unknown, only the above input and output data being
known, the identification model of the CSTR is
selected as

0 500

ve, () = flg.(i —1),q.(G —2),q.(G—3) s
Cp(i —1),CyG—2),CpG—3) . (18)

3 Experimental results and analysis

In the experiment, the mean square error(MSE)is

selected as the performance indicator of the

identification model, that is

1N, -
E_N2<y,~ i) (19)

i=1
where y; and y; are the actual output and test output,
respectively; and N is the number of the testing data
set.

In the experiment, QKLMS selects three common
kernel functions according to Egs. (3)—(5), and the
corresponding parameters are set as follows: the
order of Polynomial kernel function is p = 2; the
input weight and offset of Sigmoid kernel function
are v=0. 8 and ¢=1, respectively; and the kernel
width of Gaussian kernel function is 6=1.

When the quantization threshold ey varies between
(0,1), the identification performance on the test set

can be obtained, and the experiment results are
shown in Table 1.

Table 1 Comparison of identification performance of QKLMS based on three different kernel functions

Polynomial kernel

Sigmoid kernel

Gaussian kernel

o

MSE_test Train (s) MSE _test Train (s) MSE_test Train (s)
0.1 3.112 5X10°°6 2.569 3 5.262 0X1077 3.210 4 2.014 7X10°7 3.215 8
0.2 8.589 6 X107 3.136 9 3.662 5X10°7 3.701 1 1.233 2X10°7 2.682 6
0.3 2.369 3X10°7 3.056 9 6.316 8 X108 3.596 3 4,363 5X10°8 3.313 3
0.4 2.8521 X108 2.133 8 2.142 6 X108 3.332 1 3.771 5X1077 3.369 8
0.5 6. 745 31078 3.140 1 3.658 6 X107 2.910 3 5.931 1X10710 2.501 4
0.6 9.432 8108 2.090 1 8.325 9X10°° 3.075 2 8.782 3x10 1 3.329 3
0.7 1.696 3107 2.187 2 3.437 7X10°8 2.861 0 6.252 1X10°7 2.978 8
0.8 7.362 9X10°7 3.373 0 2.693 0X1078 2.753 0 5.158 2X 1078 3.072 2
0.9 3.512 8X10°6 3.132 4 4,364 1X10°7 3.009 8 3.396 4 X107 3.142 8

It can be seen from Table 1 that the MSE changes 3.81s. When the learning rate is 0.45, the

with the change of quantization threshold ey. The
comparison shows that when the Gaussian kernel
function is selected, the identification accuracy is the
best and can reach 8. 782 3 X 107",
further observed that the
concentrated in 2. 50 s—3. 36 s.

It can also be

training time is

Considering further experiment based on Gaussian
kernel function, that is, when the learning rate 5
varies between (0,1), the identification performance
on the test set can be observed, and the results are
shown in Table 2. It is observed from Table 2 that
the MSE of QKLMS changes with the change of 7,

and the training time is concentrated in 2. 89 s —

identification accuracy is the highest and the MSE of
the testing set is 3. 850 9 X 107",
Table 2

learning rate changes

Comparison of identification performance when

7 MSE test Train (s) Test (s)
0.01 6. 284 9X10°8 3.3215 4.732'5
0. 05 3.7251X10°8 3.409 8 5.325 8
0. 15 5.523 9X1077? 3.063 1 4,691 2
0. 20 6.158 210710 3.525 5 5.410 5
0. 30 1.329 510710 2.956 3 4,901 1
0. 40 5.025 9X10710 3.644 5 5.365 4
0. 45 3.850 9 X101 3.8112 5.2217
0. 55 7.3652X1071 2.891 1 5.093 6
0. 70 4,132 8X10°10 3.755 3 4. 868 2
0. 85 3.285 6X1077 3.414 7 5.283 3
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When 7=0. 45, the identification performance of
the test set can be observed from Table 3 by
changing the sizes of ey and 6. It can be seen that the
MSE changes with the changes of ey and ¢, and the
training time is relatively concentrated in 2. 72 s —
3.61 s. When ey =0. 60, and 6=6, the identification
accuracy of QKLMS is the highest and the MSE of
the test set is 1.232 8X107",
identification accuracy of QKLLMS is nearly one order
of magnitude higher than that of KLMS (ey =0)
under the same conditions.

Moreover, the

Table 3 Comparison of identification performance of QKLMS

ey o MSE_test Train (s) Test (s)
0. 10 83 2.360 2X10°8 2.725 8 5.052 3
0. 25 15 8. 147 3X1077? 3.563 4 4.664 4
0. 35 33 3.582 4X10°10 3,373 2 5.456 9
0. 40 56 6.621 1101 3.052 0 5.1235

0 6 1.850 91013 3,240 9 4,982 2
0. 50 38 1.053 2X10° 13 2,901 2 4,496 3
0. 55 17 7.257 3X1071 2,887 3 5.521 4
0. 60 6 1.232 8X10~ 3.2521 5.337 2
0. 65 33 5.214 7X1071 3,617 8 4.833 6
0.75 42 3.562 3X10712  2.8312 5.374 4
0. 80 61 4.3625X1071° 3,577 9 346 112

When ey=0. 60, 6=6 and 5=0. 45, Fig. 3 shows
the error curve of each sample point on the test set.
Fig. 4 shows the comparison curve of the actual value
and identification value of output concentration. The
magnitude of the identification error is approximately
1077, Combining with Figs. 3—4, it can be seen that
QKLMS can achieve excellent results in the modeling
of CSTR.

6><10’7|

Error
(=)

2F 4

_40 200 400 600 800 1000 120014001600 1800 2000
Sample point

Fig.3 Error curve of each sample point on test set

5 0.090 T T T T T T T T L
Actual
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L e
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Fig. 4 Comparison curve of the actual value and identification
value of output concentration

To further verify the validity of the QKLMS
algorithm, Table 4 shows the MSE of the QKLMS
and the existing identification algorithm on the test
set under the same conditions. The comparison
shows that the identification accuracy of QKLMS is

improved by one order of magnitude.

Table 4 Comparison of identification performance based on
QKLMS and other algorithms
Algorithm MSE_test
BP-MLPL18] —1.7X10°2
LS-SVML18] —1.6X1073
FNNL8J 2.976X101
GAP-RBF! 4,956 X107
MGAP-RBFL 4, 078X 1077
ESNL 1.105 31077
NARX-ELML! 4,160 2X10~ 11
NARX-KELM-H1 2.043 610713
KLMS 1.850 9 X107 13
QKLMS 1.232 8X10 14

4 Conclusion

In this paper, based on the input and output data
of the unknown nonlinear CSTR process, a novel
identification method with the QKLMS algorithm is
proposed. The online vector quantization method is
used to quantize the input in the feature space and
control the size of the kernel function structure.

Compared with existing feed-forward neural
network method and ESN network as well as other
kernel learning methods, under the same conditions,
experimental results show that the identification
method based on QKLMS algorithm can achieve good
results, and improve the accuracy of identification
effectively. Therefore, our research provides a new
idea for the complex nonlinear process that is difficult

to obtain accurate mathematical models.
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