此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Hydraulic cylinder control of injection molding machine based on differential evolution fractional order PID

LI Ya-qiuGU Li-chenYANG ShaXUE Xu-fei

 

School of Mechatronic Engineering, Xian University of Architecture and Technology, Xian 710055, China

 

AbstractInjection molding machine, hydraulic elevator, speed actuators belong to variable speed pump control cylinder system. Because variable speed pump control cylinder system is a nonlinear hydraulic system, it has some problems such as response lag and poor steady-state accuracy. To solve these problems, for the hydraulic cylinder of injection molding machine driven by the servo motor, a fractional order proportion-integration-diferentiation (FOPID) control strategy is proposed to realize the speed tracking control. Combined with the adaptive differential evolution algorithm, FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine. Then the slef-adaptive differential evolution fractional order PID controller (SADE-FOPID) model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading. The simulation results show that compared with the classical PID control, the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm. Experimental results show that SADE-FOPID control strategy is effective and feasible, and has good anti-load disturbance performance.

Key wordsvariable speed pump-controlled cylinder; fractional order proportion-integration-differentiation (FOPID); self-adaptive differential evolution (SADE); injection molding machine control; anti-load disturbance

CLD numberTP273             doi10.3969/j.issn.1674-8042.2020.04.002

 

References

 

1Peng Y G, Wei W. Application and control strategy of servo motor driven constant pump hydraulic system in precision injection molding. Journal of Mechanical Engineering, 2011, 47(2): 173-179.

2Quan L. Current state, problems and the innovative soluiton of electro-hydraulic technology of pump controlled cylinder. Journal of Mechanical Engineering, 2008, 44(11): 87-92.

3Jia Y F, Gu L C. System design and experimental analysis for hydraulic power unit with permanent magnet synchronous motor drive.China Mechanical Engineering, 2012, 23(3): 286-290.

4Huang X P, Hou J. Hydraulic control of injection moulding machine based on BP neural network PID. China Plastics Industry, 2019, 47(7): 64-66.

5Zhang H J, Quan L, Li B. Comparative study on energy efficiency of the electro-hydraulic control system in injection molding machine. China Mechanical Engineering, 2012, 48(8): 180-187.

6Chiang M H, Chen C C, Kuo C F J. The high response and high efficiency velocity control of a hydraulic injection molding machine using a variable rotational speed electro-hydraulic pump-controlled system. The International Journal of Advanced Manufacturing Technology, 2009, 43(9/10): 841-851.

7Kong X D, Song Y, Ai C. Constant speed control method of variable speed input fixed displacement pump-constant speed output variable motor system. Journal of Mechanical Engineering, 2016, 52(8): 179-190.

8Peng T H, Yue N G. Speed loss compensation experiment study in variable-speed pump-control-motor system.  Journal of Mechanical Engineering, 2012, 48(4): 175-181.

9Sun C, Fang J, Wei J, et al. Nonlinear motion control of a hydraulic press based on an extended disturbance observer. IEEE Access, 2018, 6: 18502-18510.

10Shen W, Wang J. Adaptive fuzzy sliding mode control based on pi-sigma fuzzy neutral network for hydraulic hybrid control system using new hydraulic transformer. International. Journal of Control, Automation and Systems, 2019, 17(7): 1708-1716.

11Shao J P, Zhang L, Jin Z H. Fractional order PID control for an electro-hydraulic position servo system based on repetitive control compensation. Journal of Beijing University of Technology, 2015, 41(4): 519-525.

12Podlubny I. Fractional-order systems and PI controllers. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.

13Tian D, Gao Y, Yan X M, et al. Optimization of pitch parameters of wind turbines based on differential evolution algorithm. Acta Energiae Solaris Sinica, 2019, 40 (8): 2154-2161

14Zhang X, Zhang D H, Liu Y Y. Hydraulic turbine governing system based on fractional-order fuzzy PID control. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(6): 504-510.

15Liu S A, Xie D T, Shang T, et al. Control strategy of the value plant of hydraulic transformer based on fractional order PID controller. Journal of Beijing University of Technology, 2013, 39(10): 1452-1458.

16Huang L L, Zhou X L, Xiang J H. Self-adjusting design on parameters of the fractional order PID controller. Systems Engineering and Electronics, 2013, 35(5): 1064-1069.

17Xue F X, Liu X H, Chen W, et al. Fractional order PID control for steer-by-wire system of emergency rescue vehicle based on genetic algorithm. Journal of Central South University, 2019, 26(9): 2340-2353.

18Wei L X, Wang H, Mu X W. Control of revolving inverted pendulum based on PSO-FOPID controller. Control Engineering of China, 2019, 26(2): 196-201.

19Zheng D S, Gu L C, Jia Y F, et al. Research on the electro-hydraulicload simulation based on amesim software. Machine Design & Research, 2013, 29(2): 97-100.

20Zhu C X, Zou Y. Summary of research on fractional-order control. Control and Decision, 2009, 24(2): 161-169.

21Storn R, Price K. Differential evolutiona simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341-359.

 

 

基于差分进化分数阶PID的注塑机液压缸控制

 

李亚秋, 谷立臣,  莎, 薛旭飞

 

(西安建筑科技大学 机电工程学院, 陕西 西安 710055

 

 :  注塑机、 液压电梯、 调速作动器等变转速泵控缸属强非线性液压系统, 其速度跟踪控制存在响应滞后、 稳态精度差等问题, 为此, 提出基于分数阶PID的控制策略来实现由伺服电机驱动定量泵的注塑机液压缸速度跟踪控制。 首先, 结合自适应差分进化算法对控制器参数进行在线整定; 然后, 利用伺服电机驱动的齿轮泵控液压缸注塑机工况模拟加载试验系统, 建立了变转速泵控液压缸的差分进化分数阶PID控制器(Self-adaptive differential evolution fractional order PID, SADE-FOPID)模型。 仿真结果表明, 运用自适应差分进化算法优化控制参数的分数阶PID控制比经典PID控制具备更好的稳态精度和快速响应性能, 反复实验结果证明了该控制策略的有效性和可行性, 并具备良好的抗负载扰动性能。

 

关键词:  变转速泵控液压缸; 差分阶PID控制; 自适应差分进化; 注塑机控制; 抗负载扰动

 

引用格式:  LI Ya-qiuGU Li-chenYANG Shaet al. Hydraulic cylinder control of injection molding machine based on differential evolution fractional order PID. Journal of Measurement Science and Instrumentation, 2020, 114): 317-325. doi10.3969j.issn.1674-8042.2020.04.002

 

[full text view]