此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Optical polarization imaging for underwater target detection with non-scatter background

GUAN Jin-ge1ZHAO Yong2ZHENG Yong-qiu3MA Miao4SUN Peng1XUE Chen-yang3

 

1. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China2. Beijing Institute of Computer Application Technology, China North Industries Group Corporation Limited, Beijing 100089, China3. Key Laboratory of Instrumentation Science and Dynamic MeasurementNorth University of China), Ministry of Education, Taiyuan 030051, China4. Department of Science, Taiyuan Institute of Technology, Taiyuan 030008, China

 

AbstractFor conventional optical polarization imaging of underwater target, the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images, and the polarization property of the target is assumed to be completely depolarized. When the scattering background is unseen in the field of view or the target is polarized, conventional method is helpless in detecting the target. An improvement is to use lots of co-polarization and cross polarization detection components. We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal. And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method. The results show that the proposed method can work without scattering background reference, and further recover the target along with smooth surface for polarization preserving response. This study promotes the development of optical polarization imaging systems in underwater environments.

 

Key wordspolarization imaging; underwater optical scattering; optical information processing; target detection

 

CLD numberTP273             doi10.3969/j.issn.1674-8042.2020.04.004

 

References

 

1Maccarone A, McCarthy A, Ren X M, et al. Underwater depth imaging using time-correlated single-photon counting. Optics Express, 2015, 23(26): 33911-33926.

2Amer K O, Elbouz, M, Alfalou, et al. Enhancing underwater optical imaging by using a low-pass polarization filter. Optics Express, 2019, 27(2): 621-643.

3Yang M, Yin B, Wei Z Q, et al. Effectiveestimation of background light in underwater image dehazing. OSA Continuum, 2019, 2(3): 767-785.

4Zhan P P, Tan W J, Si J H, et al. Optical imaging of objects in turbid media using heterodyned optical Kerr gate. Applied Physics Letters, 2014, 104: 211907.

5Fu X P, Liang Z, Ding X Y, et al. Image descattering and absorption compensation in underwater polarimetric imaging. Optics and Lasers in Engineering, 2020, 132: 106115.

6Bianco V, Paturzo M, Finizio A, et al. Clear coherent imaging in turbid microfluidics holographic acquisitions. Optics Letters, 2012, 37(20): 4212-4214.

7Gilbert G D, Pernicka J C. Improvement of underwater visibility by reduction of backscatter with a circular polarization technique. Applied Optics, 1967, 6(4): 741-746.

8Leonard I, Alfalou A, Brosseau C. Sensitive test for sea mine identification based on polarization-aided image processing. Optics Express, 2013, 21(24): 29283-29297.

9Lewis G D, Jordan D L, Roberts P J. Backscattering target detection in a turbid medium by polarization discrimination. Applied Optics, 1999, 38(18): 3937-3944.

10Ni X H, Alfano R R. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium. Optics Letters, 2004, 29(23): 2773-2775.

11Shumyatsky P, Milione G, Alfano R R. Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media. Optics Communications, 2014, 321: 116-123.

12Tao Q Q, Sun Y X, Shen F, et al. Active imaging with the aids of polarization retrieve in turbid media system. Optics Communications, 2016, 359: 405-410.

13Walker J G, Chang P C,Hopcraft K I. Visibility depth improvement in active polarization imaging in scattering media. Applied Optics, 2000, 39(27): 4933-4941.

14Miller D A,Dereniak E L. Selective polarization imager for contrast enhancements in remote scattering media. Applied Optics, 2012, 51(18): 4092-4102.

15Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze. Applied Optics, 2003, 42(3): 511-525.

16Namer E, Shwartz S, Schechner Y Y. Skyless polarmetric calibration and visibility enhancement. Optics Express, 2009, 17(2): 472-493.

17Treibitz T, Schechner Y Y. Active polarization descattering. IEEE Transactions on Pattern and Machine Intelligence, 2009, 31(3): 385-399.

18Dubreuil M, Delrot P, Leonard I. Exploring underwater target detection by imaging polarimetry and correlation techniques. Applied Optics, 2013, 52(5): 997-1005.

19Huang B J, Liu T G, Hu H F. Underwater image recovery considering polarization effects of objects. Optics Express, 2016, 24(9): 9826-9838.

20Hu H F, Zhao L, Huang B J, et al. Enhancing visibility of polarimetric underwater image by transmittance correction. IEEE Photonics Journal, 2017, 9(3): 6802310.

21Jaffe J S. Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-110.

22Han P L, Liu F, Yang K, et al. Active underwater descattering and image recovery. Applied Optics, 2017, 56(23): 6631-6638.

23DeBoo B, Sasian J M, Chipman R A. Depolarization of diffusely reflecting man-made objects. Applied Optics, 2005, 44(26): 5434-5445.

24Shi D F, Hu S X, Wang Y J. Polarimetric ghost imaging. Optics Letters, 2014, 39(5): 1231-1234.

25Agaian S S, Panetta K, Grigoryan A M. Transform-based image enhancement algorithms with performance measure. IEEE Transactions on Image Processing, 2001, 10(3): 367-382.

 

 

 

基于无散射参照偏振成像技术的水下目标光学检测

 

管今哥1, 赵  勇2, 郑永秋3, 马淼4, 孙鹏1, 薛晨阳3

 

1. 中北大学 信息与通信工程学院, 山西 太原 0300512. 中国兵器工业计算机应用技术研究所, 北京 1000893.中北大学 仪器科学与动态测试教育部重点实验室, 山西 太原 0300514. 太原工业学院 理学系, 山西 太原 030008

 

 :  光学偏振成像系统能够基于水体散射噪声与目标信号之间的退偏振特性差异有效地抑制光散射效应对水下目标检测效果的影响。 然而, 传统偏振检测方法需要事先在图像无目标区域对水体后向散射光的偏振度进行测量, 并且假设目标为完全非偏振特征。 当水体后向散射场景没有呈现在光学成像系统视场中或者目标具有偏振明显特性时, 上述检测方法失效。 针对该问题, 通过测量水下场景的平行偏振与正交偏振分量, 提出了偏振减方法对水体散射噪声与目标信号的退偏振特性进行正确估计, 并且在石英比色皿容器中对所提方法的可靠性进行了实验验证。 结果表明, 偏振减方法适用于无散射背景参照的情形, 并可以检测水下环境中表面光滑的保偏目标。

 

关键词:  偏振成像; 水体散射; 光学信息处理; 目标检测

 

引用格式:  GUAN Jin-geZHAO YongZHENG Yong-qiuet al. Optical polarization imaging for underwater target detection with non-scatter background. Journal of Measurement Science and Instrumentation, 2020, 114): 335-342. doi10.3969j.issn.1674-8042.2020.04.004

 

[full text view]