此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Dynamic reactive power planning method for CSP-PV hybrid power generation system


ZHANG Hong1, DONG Hai-ying1,2, CHEN Zhao3, HUANG Rong3, DING Kun3

 

(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;3. State Grid Gansu Electric Power Research Institute, Lanzhou 730050, China)

 

Abstract: Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic (CSP-PV) hybrid power generation system, it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself. We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system. The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself. The critical fault node is determined by the transient voltage stability recovery index, and the weak node of the system is initially determined. Based on this, the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device. Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability. Furthermore, the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution (DE-PSO). The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method, the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost.

 

Key words: transient voltage recovery index; sensitivity index; dynamic reactive power planning optimization; particle swarm optimization based on differential evolution (DE-PSO)

 

CLD number: TP273doi: 10.3969/j.issn.1674-8042.2020.03.009

 

References

 

[1]Ding M, Wang W S, Wang X L, et al. A review on the effect of large-scale PV generation on power systems. Proceedings of the CSEE, 2014, 34(1): 1-14.
[2]Du E S, Zhang N, Kang C Q, et al. Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power. Proceedings of the CSEE, 2016, 36(21): 5765-5775.
[3]Zhang W, Li F, Tolbert L M. Review of reactive power planning: objectives, constraints, and algorithms. IEEE Transactions on Power Systems, 2007, 22(4): 2177-2186.
[4]Xu Y, Dong Z Y, Meng K, et al. Multi-objective dynamic var planning against short-term voltage instability using a decomposition-based evolutionary algorithm. IEEE Transactions on Power Systems, 2014, 29(6): 2813-2822.
[5]Yan S M, Shen C, Wang Y T. Levenberg-marguardt algorithm based var compensation method for large-scale power systems. Proceedings of the CSEE, 2016, 36(18): 4864-4872.
[6]Wang Y R, Wan Q L, Chen H. Multi-objective reactive power optimization by fuzzy cluster and learning automata. Power System Technology, 2012, 36(7): 224-230.
[7]Zhang Z Q, Miao Y Z, Li X R, et al. Location selection of reactive power compensation and compensation capacity optimization. Proceedings of the CSU-EPSA, 2015, 27(3): 92-97.
[8]Sapkota B, Vittal V. Dynamic var planning in a large power system using trajectory sensitivities. IEEE Transactions on Power Systems, 2010, 25(1): 461-469.
[9]Yuan Z C, Liu W H, Song Q. Optimal allocation method of dynamic var compensation based on transient voltage stability index. Automation of Electric Power System, 2009, 33(14): 17-21.
[10]Paramasivam M, Salloum A, Ajjarapu V, et al. Dynamic optimization based reactive power planning to mitigate slow voltage recovery and short term voltage instability. IEEE Transactions on Power Systems, 2013, 28(4): 3865-3873.
[11]Zhou S H, Tang F, Liu D C, et al. A dynamic var optimal configuration method for reducing the risk of transient voltage instability. Power System Protection and Control, 2018, 46(7): 68-75.
[12]Yang D, Cheng H Z, Ma Z L ,et al. Integrated reactive power planning methodology considering static and transient voltage stability for AC-DC hybrid system. Proceedings of the CSEE, 2017, 37(11): 3078-3086.
[13]Wildenhues S, Rueda J L, Erlich I. Optimal allocation and sizing of dynamic var sources using heuristic optimization. IEEE Transactions on Power Systems, 2015, 30(5): 2538-2546.
[14]Wang Y R, Li F X, Chen H. Reactive power planning using different var devices. Journal of Southeast University (Natural Science Edition), 2017, 47(2): 299-305.
[15]Wang Y, Li F, Wan Q, et al. Reactive power planning based on fuzzy clustering, gray code, and simulated annealing. IEEE Transactions on Power Systems, 2011, 26(4): 2246-2255.
[16]Hou W. Hybrid multi-objective optimization for hydrodynamic bearing design. Control Engineering of China, 2018, 25(6): 1044-1049.
[17]Ni Y X, Chen S S, Zhang B L. Theory and analysis of dynamic power system. Tsinghua University Press, Beijing, 2002: 181-210.
[18]Xia C J, Yang Z C, Zhou B R, et al. Analysis of commutation failure in multi-infeed HVDC system under different load models. Power System Protection and Control, 2015, 43(9): 76-81.
[19]Tang Y, Bu G Q, Hou J X, et al. PSD-BPA transient stability program user manual. China Electric Power Research Institute, 2010: 87-122.
[20]Ma C, Deng C, Xiong Y, et al. An intelligent optimization algorithm based on hybrid of GA and PSO. Journal of Computer Research and Development, 2013, 50(11): 2278-2286.

 

光热-光伏联合发电系统动态无功规划方法研究

 

张宏1, 董海鹰1,2, 陈钊3, 黄蓉3, 丁坤3

 

(1. 兰州交通大学, 自动化与电气工程学院, 甘肃 兰州 730070;2. 兰州交通大学, 新能源与动力工程学院, 甘肃 兰州 730070;3. 国网甘肃省电力公司电力科学研究院, 甘肃 兰州 730050)

 

摘要:针对光热-光伏联合发电系统中部分薄弱节点发生故障后仅依靠系统自身无功调节能力无法使其暂态电压恢复稳定特点, 提出了一种适应于光热-光伏联合发电系统的动态无功规划方法。 该方法在考虑系统自身无功调节能力基础上, 确定动态无功补偿装置安装节点及其补偿容量。 通过暂态电压稳定恢复指标确定关键故障节点, 初步判断系统薄弱节点, 进而利用灵敏度指标确定动态无功补偿装置安装节点; 以动态无功补偿装置最低投资成本提高系统暂态电压稳定性为优化目标建立动态无功规划优化模型, 利用基于差分进化的粒子群算法(Particle swarm optimization based on differential evolution, DE-PSO)对无功补偿节点安装容量进行优化。 算例系统仿真结果表明, 该方法与仅考虑动态无功补偿装置安装位置优化方法相比, 在相同无功补偿成本下提高系统暂态电压稳定性效果更佳。

 

关键词:暂态电压稳定恢复指标; 灵敏度指标; 动态无功规划优化; 基于差分进化的粒子群算法

 

引用格式:ZHANG Hong, DONG Hai-ying, CHEN Zhao, et al. Dynamic reactive power planning method for CSP-PV hybrid power generation system. Journal of Measurement Science and Instrumentation, 2020, 11(3): 258-266. [doi: 10.3969/j.issn.1674-8042.2020.03.009]

 

[full text view]