此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Calculation and analysis of losses of magnetic-valve controllable reactor


ZHANG Hui-ying1,2, TIAN Ming-xing1,2, JING Pei1,2, WANG Dong-dong1,2 


(1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China)


Abstract: Magnetic-valve controllable reactor(MCR) has characteristics of DC bias and different types of magnetic flux density in the magnetic circuit and winding current distortion. These characteristics not only lead to loss calculation method of MCR different from that of power transformer, but also make it more difficult to calculate the core loss and wingding loss of MCR accurately. Our study combines core partition method with dynamic inverse J-A model to calculate the core loss of MCR. The winding loss coefficient of MCR is proposed, which takes into account the influence of harmonics and magnetic flux leakage on the winding loss of MCR. The result shows that the proposed core loss calculation method and winding loss coefficient are effective and correct for the loss calculation of MCR.


Key words: magnetic-valve controllable reactor (MCR); dynamic inverse J-A model; core loss; core partition; winding loss coefficient


CLD number: TM47             doi: 10.3969/j.issn.1674-8042.2020.01.007


References


[1]Wang Z Q, Yin Z D, Zhou L X, et al. Study on controllable reactor magnetic structure and loss based on ANSYS. In: Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, Xi’an: 2009: 201-205.

[2]Karymov R R, Oleksyuk B V, Safiullin D Kh. Active power loss in reactive power sources based on magnetically controlled shunt reactors. Russian Electrical Engineering, 2012, 83(10): 536-538.

[3]Ou Z G. Loss research of magnetic controlled reactor.Guangdong: Guangdong University of Technology,2014: 37-39.

[4]Olivares-Galvan J C, Escarela-Perez R, de León F, et al. Separation of core losses in distribution transformers using experimental methods. Canadian Journal of Electrical & Computer Engineering, 2015, 35(1): 33-39.

[5]Iwakuma M, Funaki K, Kajikawa K, et al. AC loss properties of a 1 MVA single-phase HTS power transformer. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1482-1485.

[6]Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis. Journal of Applied Physics, 1984, 55(6): 2115-2120.

[7]Baghel A P S, Kulkarni S V.Dynamic loss inclusion in the Jiles-Atherton (JA) hysteresis model using the original JA approach and the field separation approach.IEEE Transactions on Magnetics, 2014, 50(2): 369-372.

[8]Wilson P R, Ross J N, Brown A D. Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm. IEEE Transactions on Magnetics, 2001, 37(2): 989-993.

[9]Liorzou F, Phelps B, Atherton D L.Macroscopic models of magnetization. IEEE Transactions on Magnetics, 2000, 36(2): 418-428.

[10]Wang Y, Liu Z Z. Estimation model of core loss under DC Bias. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 0608905.

[11]Yin Z D. Research on the theories and applications of magnetic valve controllable reactor. Wuhan: Wuhan University of Hydraulic and Electric Engineering, 1996: 71-78. 

[12]Tian M X, Li J, Shi P T, et al. A novel quickness improvement method of a magnetic-valve controllable reactor.IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5.

[13]IEEE Std C57.110-2008, IEEE recommended practice for establishing transformer capability when supplying non-sinusoidal load currents.[2019-01-15]. http:∥www.infoeach.com/category-17-b0.html.

[14]Elmoudi A, Lehtonen M, Nordman H. Corrected winding eddy-current harmonic loss factor for conductor subject to non-sinusoidal load currents. Power Technology, IEEE Russia, 2008: 1-6.

[15]Holmberg P, Bergqvist A, Engdahl G. Modeling eddy currents and hysteresis in a transformer laminate. IEEE Transactions on Magnetics, 2002, 33(10): 1306-1309.



磁阀式可控电抗器的损耗计算与分析 


张慧英1,2, 田铭兴1,2, 敬  佩1,2, 王东东1,2


(1. 兰州交通大学 自动化与电气工程学院, 甘肃 兰州 730070; 2. 甘肃省轨道交通电气自动化工程实验室(兰州交通大学), 甘肃 兰州 730070)



摘  要:磁阀式可控电抗器(Magnetic-valve controllable reactor, MCR)具有直流偏磁、绕组电流谐波大和磁路中磁通密度不同的特点, 这些特点不仅导致其损耗计算方法与电力变压器不同, 而且使准确计算MCR的铁芯和绕组损耗比较困难。 本文将铁芯分区与J-A动态逆模型相结合, 提出MCR铁芯损耗的计算方法;考虑漏磁和谐波的影响, 分析推导得到MCR的绕组损耗系数的计算方法和表达式。 最后, 通过实例的仿真和实验, 验证了提出的铁芯损耗计算方法和绕组损耗系数的正确可靠性。 

关键词: 磁阀式可控电抗器; J-A动态逆模型; 铁芯损耗; 铁芯分区; 绕组损耗系数



引用格式: ZHANG Hui-ying, TIAN Ming-xing, JING Pei, et al. Calculation and analysis of losses of magnetic-valve controllable reactor. Journal of Measurement Science and Instrumentation, 2020, 11(1): 54-62. [doi: 10.3969/j.issn.1674-8042.2020.01.007]


[full text view]