此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Laser diode drive method with narrow-width and high-peak current for multi-line LIDAR


LI Xu, DUAN Fa-jie, MA Ling, WANG Xian-quan, JIANG Jia-jia, FU Xiao

 

(State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China)

 

Abstract: Light detection and ranging (LIDAR) based on time of flight (TOF) method is widely used in many fields related to distance measurement. LIDAR generally uses laser diode (LD) to emit the pulsed laser with high peak power and short duration to ensure a large distance measurement range and eye safety. To achieve this goal, we propose a pulsed LD drive method producing the drive current with high peak and narrow pulse width. We analyze the key issues and related theories of the drive current generation based on this method and design an LD driver. A model of drive current generation is established and the influence of operating frequency on drive current is discussed. The LD driver is simulated by software and verified by experiments. The working frequency of the driver changes from 20 kHz to 100 kHz and the charging voltage is set at 130 V. The current produced by this driver has a duration of 8.8 ns and a peak of about 35 A, and the peak output optical power of the LD exceeds 75 W.

 

Key words: light detection and ranging(LIDAR); distance measurement; laser diode (LD) driver; pulsed current

 

CLD number: TN958  Document code: A

 

Article ID: 1674-8042(2019)03-0246-08  doi: 103969/jissn1674-8042201903008

 

References

 

[1]Fersch T, Weigel R, Koelpin A. A CDMA modulation technique for automotive time-of-flight LiDAR systems. IEEE Sensors Journal, 2017, 17(11): 3507-3516.
[2]Hallman L W, Jahromi S, Jansson J P, et al. On two dimensional range finding using a ~1 nJ / ~100 ps laser diode transmitter and a CMOS SPAD matrix. IEEE Photonics Journal, 2018, 10(4): 1-10.
[3]Surmann H, Nüchter A, Hertzberg J. An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics & Autonomous Systems, 2003, 45(3/4): 181-198.
[4]Hernández-García D E, Gonzalez-Barbosa J J, Hurtado-Ramos J B, et al. 3D city models: mapping approach using LIDAR technology. In: Proceedings of IEEE Conference on Electrical Communications and Computers, San Andres Cholula, Mexico, 2011: 206-211.
[5]Chong Z. J, Qin B, Bandyopadhyay T, et al. Mapping with synthetic 2D LIDAR in 3D urban environment. In: Proceedings of IEEE Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013: 4715-4720.
[6]Zhao H J, Shibasaki R. A novel system for tracking pedestrians using multiple single-row laser-range scanners. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2005, 35(2): 283-291.
[7]Hintikka M, Kostamovaara J. Experimental investigation into laser ranging with sub-ns laser pulses. IEEE Sensors Journal, 2018, 18(3): 1047-1053.
[8]Xia W Z, Ma Y Y, Han S K, et al. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array. Review of Scientific Instruments, 2018, 89(6): 063108.
[9]Blasco G, D?rich D, Reh H, et al. A sub-ns integrated CMOS laser driver with configurable laser pulses for time-of-flight applications. IEEE Sensors Journal, 2018, 18(16): 1-10.
[10]Kilpela A, Pennala R, Kostamovaara J. Precise pulsed time-of-flight laser range finder for industrial distance measurements. Review of Scientific Instruments, 2001, 72(4): 2197-2202.
[11]Zhang X Y, Yang X L, Li Z B, et al. Subnanosecond pulsed power generator with avalanche transistor Marx circuit. In: Proceedings of International Conference on Computational Problem-Solving, Chengdu, China, 2011: 347-349.
[12]Li J T, Zhao Z, Sun Y, et al. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. Review of Scientific Instruments, 2017, 88(3): 033507.
[13]Krishnaswamy P, Kuthi A, Vernier P T, et al. Compact subnanosecond pulse generator using avalanche transistors. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 871-877.
[14]Cho H C, Choi H Y, Kwon W B, et al. A 25 A peak current and 7.4 ns pulse-width laser driver using an avalanche transistor and switches for LIDAR applications. Microwave & Optical Technology Letters, 2016, 58(11): 2540-2543.
[15]Wang Q, TIan X J, Wu G, et al. Design of high-peak current and narrow pulse driver of laser diode. Journal of China Universities of Posts & Telecommunications, 2009, 16(8): 82-85.
[16]Wens M, Redoute J M, Blanchaert T, et al. An integrated 10A, 2.2ns rise-time laser-diode driver for LIDAR applications. In: Proceedings of IEEE SSCIRC, Athens, Greece, 2009: 144-147.
[17]Hallman L W, Haring K, Toikkanen L, et al. 3 nJ, 100 ps laser pulses generated with an asymmetric waveguide laser diode for a single-photon avalanche diode time-of-flight (SPAD TOF) rangefinder application. Measurement Science and Technology, 2012, 23(2): 025202.
[18]Hallman L, Huikari J, Kostamovaara J. A high-speed/power laser transmitter for single photon imaging applications. In: Proceedings of IEEE Sensors, Valencia, Spain, 2014: 1157-1160.
[19]Hallman L W, Ryvkin B, Haring K, et al. Asymmetric waveguide laser diode operated in gain switching mode with high-power optical pulse generation. Electronics Letters, 2010, 46(1): 65-66.
[20]Huikari J M T, Avrutin E A, Ryvkin B S, et al. High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 189-194.
[21]Baker R J, Pocha M D. Nanosecond switching using power MOSFETs. Review of Scientific Instruments, 1990, 61(8): 2211-2213.
[22]Molina L L, Mar A, Zutavern F J, et al. Sub-nanosecond avalanche transistor drivers for low impedance pulsed power applications. Review of Scientific Instruments, 2001, 72(4): 2197-2202.

 

用于多线激光雷达的窄脉宽高峰电流激光二极管驱动方法

 

李旭, 段发阶, 马凌, 王宪全, 蒋佳佳, 傅骁

 

(天津大学 精密测试技术与仪器国家重点实验室, 天津 300072)

 

摘要:基于时间飞行法(Time of flight, TOF)的激光雷达(Light detection and ranging, LIDAR)被广泛应用于与距离测量有关的多种领域。 激光雷达一般利用激光二极管(Laser diode, LD)发射具有高峰值功率和短持续时间的脉冲激光, 以保证实现较大的距离测量并兼顾人眼安全。 为实现这一目标, 提出了一种能够实现高峰值和窄脉宽驱动电流的脉冲激光二极管驱动方法。 分析了基于该种方法产生驱动电流的关键问题和相关理论, 并且设计了一个激光二极管驱动器。 建立了驱动电流产生的模型, 重点研究了工作频率对驱动电流的影响。 该驱动器由软件模拟并通过实验验证。 实际实验中, 驱动器的工作频率从20 kHz到100  kHz变化, 充电电压设置为130 V。 此驱动器产生的脉冲电流持续时间为8.8 ns, 峰值约为35 A。 所驱动的激光二极管峰值输出光功率超过75 W。

 

关键词:激光雷达; 距离测量; 激光二极管驱动; 脉冲电流

 

引用格式:LI Xu, DUAN Fa-jie, MA Ling, et al. Laser diode drive method with narrow-width and high-peak current for multi-line LIDAR. Journal of Measurement Science and Instrumentation, 2019, 10(3): 246-253. [doi: 103969/jissn1674-8042201903008]

 

[full text view]