此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

A retinal blood vessel extraction algorithm based on CART decision tree and improved AdaBoost

DIWU Peng-peng, HU Ya-qi


(School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

 

Abstract: This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting, reversing, dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes, where CART binary tree is as the AdaBoost weak classifier, and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels, and the result basically contains complete blood vessel details. Moreover, the segmented blood vessel tree has good connectivity, which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm, the proposed algorithm has higher average accuracy and reliability index, which is similar to the segmentation results of the state-of-the-art segmentation algorithm.


Key words: classification and regression tree (CART); improved adptive boosting (AdaBoost); retinal blood vessel; local binary pattern (LBP) texture


CLD number: TP391.41           Document code: A


Article ID: 1674-8042(2019)01-0061-08    doi: 10.3969/j.issn.1674-8042.2019.01.009

 

References


[1] Joshi S, Karule P T. Retinal blood vessel segmentation. International Journal of Engineering and Innovative Technology, 2012, 1(3): 175-178.
[2] Martínez-Pérez M E, Hughes A D, Stanton A V, et al. Retinal blood vessel segmentation by means of scale-space analysis and region growing. Lecture Notes in Computer Science, 1999, 1679: 90-97.
[3] Al-Rawi M, Qutaishat M, Arrar M. An improved matched filter for blood vessel detection of digital retinal images. Computers in Biology & Medicine, 2007, 37(2): 262-267.
[4] Ricci E, Perfetti R. Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on Medical Imaging, 2007, 26(10): 1357-1365.
[5] Marín D, Aquino A, Gegúndez-Arias M E, et al. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transactions on Medical Imaging, 2011, 30(1): 146-158.
[6] Franklin S W, Rajan S E. Retinal vessel segmentation employing ANN technique by Gabor and moment invariants-based features. Applied Soft Computing, 2014, 22(22): 94-100.
[7] Cheng H D, Jiang X H, Sun Y, et al. Color image segmentation: advances and prospects. Pattern Recognition, 2001, 34(12): 2259-2281.
[8] Devasia T, Jacob P, Thomas T. Automatic optic disc boundary extraction from color fundus images. International Journal of Advanced Computer Science & Applications, 2014, 5(7): 117-124.
[9] Yu Y F, Liu G S, Ma Z H, et al. Improved pairwise rotation invariant co-occurrence local binary pattern algorithm used for texture feature extraction. Journal of Computer Applications, 2016, 36(12): 3389-3393.
[10] Wang S, Yin Y, Cao G, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 2015, 149(PB): 708-717.
[11] Sofka M, Stewart C V. Retinal vessel centerline extraction using multiscale matched filters, confidence and edge measures. IEEE Transactions on Medical Imaging, 2006, 25(12): 1531-1546.
[12] Cheng E, McLaughlin S, Megalooikonomou V, et al. Learning-based vessel segmentation in mammographic images. In: Proceedings of 1st IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology. Los Alamitos: IEEE Computer Society Press, 2011: 315-322.
[13] Gey S, Nedelec E. Model selection for CART regression trees. IEEE Transactions on Information Theory, 2005, 51(2): 658-670.
[14] Lupascu C A, Tegolo D, Trucco E. FABC: retinal vessel segmentation using Adaboost. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(5): 1267-1274.
[15] Airoldi E M, Blei D M, Fienberg S E, et al. Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 2008, 9(5): 1981-2014.
[16] Zhao Y, Rada L, Chen K, et al. Automated vessel segmentation perimeter active contour model with hybrid region of information with application to retinal images. IEEE Transactions on Medical Imaging, 2015, 34(9): 1797-1807.
[17] Zhu C Z, Cui J K, Zou B J, et al. Retinal vessel segmentation based on multiple feature fusion and random forest. Journal of Computer-Aided Design & Computer Graphics, 2017, 29(4): 584-592.
[18] Fraz M M, Remagnino P, Hoppe A, et al. An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2538-2548.
[19] Liskowski P, Krawiec K. Segmenting retinal blood vessels with deep neural networks. IEEE Transactions on Medical Imaging, 2016, 35(11): 2369-2380.
[20] Dasgupta A, Singh S. A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Melbourne, 2017: 248-251.

 

基于CART决策树与改进的AdaBoost的视网膜血管提取算法


第五朋朋, 胡亚琦


(兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070)


摘  要:  本文提出了一种分类回归树(Classification and regression tree, CART)算法与改进的AdaBoost相结合的视网膜血管分割的监督学习算法。 该算法对视网膜图像的绿色分量提取、反转、膨胀和增强后分别提取LBP(local binary patterns)纹理特征和局部特征, 从而构建出17维特征向量。 利用特征向量与专家手工标注的数据构造一个数据集, 以特征为节点生成CART二叉树, 将CART二叉树作为AdaBoost的弱分类器, 通过加入再判决函数对AdaBoost做出一定改进, 从而形成强分类器。 本算法在DRIVE(digital retinal images for vessel extraction)数据库上进行了实验仿真, 实验结果表明, 本文所提出的改进算法对血管的分割精度高, 包含了完整的血管细节, 而且分割出来的血管树的连通性较好, 能够反映出血管的分布走势。 与传统的AdaBoost分类算法和基于SVM(support vector machine)的分类算法相比, 本文所提出的改进算法的平均准确率和可靠性指标都比较高。

 
关键词:  分类回归数; 改进的AdaBoost; 视网膜血管; 局部二进模式纹理

 

引用格式:  DIWU Peng-peng, HU Ya-qi. A retinal blood vessel extraction algorithm based on CART decision tree and improved AdaBoost. Journal of Measurement Science and Instrumentation, 2019, 10(1): 61-68. [doi: 10.3969/j.issn.1674-8042.2019.01.009]

 

[full text view]