此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Model improvement and verification of ring electrostatic sensors

 

DENG Fang-fang1,2, ZHANG Jian-yong2,3, CHENG Rui-xue3, ZHOU Han-chang1,2, WANG Gao1,2, YAN Bing1,2

 

 

(1. Science and Technology on Electronic Test & Measurement Laboratory, North University of China, Taiyuan 030051, China;2. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China; 3. Teesside University, Middlesbrough TS1 3BA, UK)

 

 

Abstract: Accurate measurement of flow parameters is important in gas-solid two-phase flow, and such flow has to be dealt with in many processes involving bulk solids handling and transportation. The circular electrostatic sensor is one of those used for gas-solid flow measurement. In this paper, the finite element method (FEM) is used to establish the mathematical model of the sensor, the spatial sensitivity characteristics of the sensors is analyzed, and the analytic model is improved by the nonlinear least square method and the iterative method. Finally, the correlation coefficients between the experimental results and the improved processing are compared and analyzed, and the mathematical expression of the model is improved. The feasibility and practicability of the improved model are verified.

 

Key words: electrostatic sensor; gas-solid flow; measurement of flow parameters

 

CLD number: TP212.9        Document code: A

 

Article ID: 1674-8042(2018)01-0068-05           doi: 10.3969/j.issn.1674-8042.2018.01.009

 

References

 

1] Chen Y W, Yang H X, Zhou J L, et al. Influence of structural optimization of coagulation elements on gas-solid two-phase flow field and particle coagulation. Thermal Power Generation, 2016, 45(1): 60-64.[2] Qian G. Study on electrostatic method for gas / solid two-phase flow velocity measurement. Beijing: Beijing Jiaotong University, 2011.

3] He Y, Zhao H, Wang H, et al. Differentially weighted direct simulation Monte Carlo method for particle collision in gas-solid flows. Particuology, 2015, 21(4): 135-145.

4] Wang C, Wu W P, Zhang W B. Optimization design of multi-electrode electrostatic sensor for velocity measurement measurement. Transducer & Microsystem Technologies, 2014, 33(8): 87-89.

5] Wen Z, Zuo H, Pecht M G. Electrostatic monitoring of gas path debris for aero-engines. IEEE Transactions on Reliability, 2011, 60(1): 33-40.

6] Chen T, Cheng S, Xu W. Model analysis of the phenomena of pulverized coal injection in blast furnace. In: Proceedings of 8th International Symposium on High-Temperature Metallurgical Processing, Springer International Publishing, 2017.

7] Zhang J, Coulthard J. Theoretical and experimental studies of the spatial sensitivity of an electrostatic pulverised fuel meter. Journal of Electrostatics, 2005, 63(12): 1133-1149.

8] Xu C, Li J, Gao H, et al. Investigations into sensing characteristics of electrostatic sensor arrays through computational modelling and practical experimentation. Journal of Electrostatics, 2012, 70(1): 60-71.

9] Zhang J Y, Xu D L, Coulthard J, et al. Analyses of characteristics of ring-shaped electrostatic meter. Chemical Engineering Communications, 2009, 197(2): 192-203.

10] Qian X, Shi D, Yan Y, et al. Effects of moisture content on electrostatic sensing based mass flow measurement of pneumatically conveyed particles. Powder Technology, 2017, 311: 579-588.

 

 

环式静电传感器的模型改进与验证

 

邓芳芳1,2, 张建勇2,3, 程瑞雪3, 周汉昌1,2, 王  高1,2, 颜  兵1,2

 

(1. 中北大学 电子测试技术国家重点实验室, 山西 太原 030051;2. 中北大学 信息与通信工程学院, 山西 太原 030051;3. 提赛德大学, 米德尔斯伯勒 TS1 3BX)  

 

 

 :  在气固两相流中, 流动参数的精确测量是非常重要的, 且这种流动必须在散装固体颗粒运输的过程中得到有效的解决。 环式静电传感器是用于气固两相流流量测量的传感器之一。 本文首先采用有限元法建立了该传感器的数学模型, 对传感器的空间灵敏度特性进行了研究, 并采用非线性最小二乘法及迭代法对解析模型进行了改进处理。 最后通过实验结果与改进处理之后结果之间的相关系数进行对比分析, 并完善了该模型的数学表达式, 验证了该改进模型的可行性和实用性。

 

关键词:  静电传感器; 气固两相流; 流动参数测量

 

引用格式:  DENG Fang-fang, ZHANG Jian-yong, CHENG Rui-xue, et al. Model improvement and verification of ring electrostatic sensors. Journal of Measurement Science and Instrumentation, 2018, 9(1): 68-72. [doi: 10.3969/j.issn.1674-8042.2018.01.009]


[full text view]