此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Acoustic focusing effect of composite metamaterial column in air

HAN Jian-ning1,2,3, ZHEN Wen-xiang1,2,3, QIN Jia-jie1,2,3, WU Yu-peng1,2,3, TANG Shuai1,2,3

 

(1. Key Laboratory of Instrumental Science & Dynamic Measurement (North University of China), Ministry of Education, Taiyuan 030051, China;2. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China;3. School of Science,  North University of China, Taiyuan 030051, China)

 

Abstract: The acoustic focusing effect of metamaterial has a wide range of applications in medicine, acoustic imaging, signal detection, etc. This paper presents an acoustic metamaterial applied to the acoustic focusing effect. The formation of acoustic metamaterial is designed into a cylindrical structure with three layers of ludox, cork and fluid rubber, which can produce a focusing phenomenon when acoustic waves propagate in air. For these strange phenomena, a scientific description is given theorietically. It can also be concluded that when the frequency of the incident acoustic wave increases, the number of peripheral bands outside the focusing poles will increase periodically.  Besides, there are numerous groups of multipolar focusing phenomena in high frequency. The design of this acoustic metamaterial is successful through theorietical and experimental verification, therefore, it can be applied to acoustic communication and test.

 

Key words: acoustic focusing effect; acoustic metamaterial;  metamaterial column; multipolar focusing phenomena

 

CLD number: O422 Document code: A

 

Article ID: 1674-8042(2017)03-0300-07  doi: 10.3969/j.issn.1674-80422017-03-015

 

References

 

[1]Zhang S, Yin L, Fang N. Focusing ultrasound with an acoustic metamaterial network. Physical Review Letters, 2009, 102(19): 194301.
[2]Jahdali R A, Wu Y. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces. Applied Physics Letters, 2016, 108(3): 82-149.
[3]YUAN Bao-guo, CHENG Ying, LIU Xiao-jun. Conversion of sound radiation pattern via gradient acoustic metasurface with space-coiling structure. Applied Physica Express, 2015, 8(2): 027301.
[4]Chang H K, Chou D Y, Sun M T. In search of emerging magnetic flux underneath the solar surface with acoustic imaging. Astrophysical Journal, 1999, 526(1): L53.
[5]GE Yong, SUN Hong-xiang, LIU Chen, et al. Acoustic focusing by an array of heat sources in air. Applied Physics Express, 2016, 9(6): 066701.
[6]XIA Jian-ping, SUN Hong-xiang. Acoustic focusing by metal circular ring structure. Applied Physics Letters, 2015, 106(6): 341.
[7]XIA Jian-ping, SUN Hong-xiang, YUAN Shou-qi, et al. Extraordinary acoustic transmission based on source pattern enhancement and reconstruction by metal cylinder structure. Applied Physics Express, 2015, 8(10): 104301.
[8]XIA Jian-ping, SUN Hong-xiang, CHENG Qian, et al. Theoretical and experimental verification of acoustic focusing in metal cylinder structure. Applied Physics Express, 2016, 9(5): 057301.
[9]Sato M, Matsuo T, Fujii T. Redshift of acoustic waves in acoustic streaming. Physical Review E:  Statistical Nonlinear & Soft Matter Physics, 2003, 68(1/2):  016301.
[10]SUN Hong-xiang, ZHANG Shu-yi. Enhancement of asymmetric acoustic transmission. Applied Physics Letters, 2013, 102(11): 013904.
[11]SUN Hong-xiang, ZHANG Shu-yi, SHUI Xiu-ji. A tunable acoustic diode made by a metal plate with periodical structure. Applied Physics Letters, 2012, 100(10): 104301.
[12]Zhou X, Hu G. Acoustic wave transparency for a multilayered sphere with acoustic metamaterials. Physical Review E:  Statistical Nonlinear & Soft Matter Physics, 2007, 75(2): 046606.
[13]Mason W P. The propagation characteristics of sound tubes and acoustic filters. Physical Review, 1928, 31(2): 283-295.
[14]JIA Han, KE Man-zhu, LI Chun-hui, et al. Unidirectional transmission of acoustic waves based on asymmetric excitation of Lamb waves. Applied Physics Letters, 2013, 102(15): 104301.
[15]Amin M R, Morfill G E, Shukla P K. Modulational instability of dust-acoustic and dust-ion-acoustic waves. Physical Review E, 1998, 58(5): 143-147.
[16]Démoré C E, Dahl P M, Yang Z, et al. Acoustic tractor beam. Physical Review Letters, 2014, 112(17): 174302.
[17]Zigoneanu L, Popa B I, Cummer S A. Design and measurements of a broadband two-dimensional acoustic lens. Physical Review B, 2011, 84(2): 3214-3219.
[18]LI Yong, LIANG Bin, XU Tao, et al. Acoustic focusing by coiling up space. Applied Physics Letters, 2012, 101(23): 036609.
[19]Romero-Garcia V, Cebrecos A, Pico R, et al. Wave focusing using symmetry matching in axisymmetric acoustic gradient index lenses. Applied Physics Letters, 2013, 103(26):  2486.
[20]WANG Wen-qi, XIE Yang-bo, Konneker A, et al. Design and demonstration of broadband thin planar diffractive acoustic lenses. Applied Physics Letters, 2014, 105(10): 1495.
[21]Molerón M, Serragarcia M, Daraio C. Acoustic Fresnel lenses with extraordinary transmission. Applied Physics Letters, 2014, 105(11): 104103.
[22]Park J J, Lee K J, Wright O B, et al. Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials. Physical Review Letters, 2013, 110(24): 244302.
[23]Hill M. A one-sided view of acoustic traps. Physics, 2016, 9(3): 1.
[24]Climente A, Torrent D, Sánchezdehesa J. Sound focusing by gradient index sonic lenses. Applied Physics Letters, 2010, 97(10): 5325.
[25]Martin T P, Nicholas M, Orris G J, et al. Sonic gradient index lens for aqueous applications. Applied Physics Letters, 2010, 97(11): 023902.
[26]LU Jiu-yang, QIU Chun-yang, KE Man-zhu, et al. Valley vortex states in sonic crystals. In:  Proceedings of  Progress in Electromagnetic Research Symposium, 2016:  41.
[27]QIU Chun-yin, KE Man-zhu, LIU Zheng-you, et al. Acoustic far-field focusing effect for two-dimensional graded negative refractive-index sonic crystals. Applied Physics Letters, 2010, 96(26): 1035.
[28]Martin T P, Layman C N, Moore K M, et al. Elastic shells with high-contrast material properties as acoustic metamaterial components. Physical Review B:  Condensed Matter, 2012, 85(16): 1279-1284.
[29]YANG Min, MA Guang-cong, WU Ying, et al. Homogenization scheme for acoustic metamaterials. Physical Review B, 2014, 89(6): 064309.
[30]COMSOL multiphysics users guide. Version 5.2. [2017-05-08]. http:∥www.comsol.com.
[31]YUAN Bao-guo, CHENG Ying, LIU Xiao-jun. Conversion of sound radiation pattern via gradient acoustic metasurface with space-coiling structure. Applied Physics Express, 2015, 8(2): 027301. 
[32]Li X F, Ni X, Feng L, et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Physical Review Letters, 2011, 106(8): 084301.

 

复合材料形成的超材料柱体在空气中的声聚焦效应

 

韩建宁1,2,3,甄文祥1,2,3,秦佳杰1,2,3,吴煜鹏1,2,3,唐帅1,2,3

 

(1. 中北大学 仪器科学与动态测试教育部重点实验室,山西 太原 030051; 2. 中北大学 信息与通信工程学院,山西 太原 030051;3. 中北大学 理学院,山西 太原 030051)

 

摘要: 基于超材料的声聚焦效应在医学、 声学、 信号检测等领域具有广泛的应用前景。 本文设计了一种用于声学聚焦效应的声学超材料柱体, 它是一个特殊的圆柱形声学超材料, 其结构由三层复合材料(硅溶胶、 软木和流体橡胶)形成。 当声波在空气中传播遇到这个超材料时, 就会在超材料中产生特殊的聚焦现象。 通过对这些奇怪的现象进行理论分析和研究, 结果表明, 当入射声波的频率增加时, 聚焦极点外侧的外围带的数量会周期性地增加。 此外, 有大量的多极聚焦现象会在高频声波中入射时出现。 理论分析和实验模拟表明, 这种声学超材料的设计是成功的, 可用于声学通信和测试等领域。


 
关键词: 声聚焦效应; 声学异向介质; 超材料柱; 多极聚焦现象

 


引用格式:HAN Jian-ning, ZHEN Wen-xiang, QIN Jia-jie, et al. Acoustic focusing effect of composite metamaterial column in air. Journal of Measurement Science and Instrumentation, 2017, 8(3): 300-306. [doi: 10.3969/j.issn.1674-8042.2017-03-15]

 

 

[full text view]

 

  • 附件【jmsi2016-3-302.pdf】已下载