此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

In-situ reactive compatibilization of HDPE/GTR blends by dicumyl peroxide and phenolic resin without catalyst

HE Mao-yong1, LI Ying-chun1, BAI Pei-kang1, WANG Wen-sheng1, JIA Shuai2

 

(1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; 2. School of Chemical and Environmental Engineering, North University of China, Taiyuan 030051, China)

 

Abstract: In-situ reactive compatibilization of high-density polyethylene (HDPE)/ground tire rubber (GTR) blends by dicumyl peroxide (DCP) and HY-2045-a kind of thermoplastic phenolic resin without catalyst was investigated by studying the morphology, stress and strain behavior, dynamic mechanical properties and crystallization performance of the blends. Scanning electron microscopy (SEM) results show that there are a lot of fibrous materials distributing in the interface, which connects the dispersed phase with the matrix and obtains better interfacial strength for prominent mechanical properties. The addition of compatibilizers results in the decrease of crystallinity of the blends and the disappearance of an obvious yield phenomenon, which was proved by the differential scanning calorimeter (DSC) test and X-ray diffraction (XRD) characterization. Although the crystallinity of the blends decreases, the tensile strength and tensile strain of the blends significantly increases, especially for the HDPE/GTR/DCP/HY-2045 blends, which is possibly attributed to the good compatibility of the blends owing to the in-situ interface crosslinking. In addition, it is found that the compatibilizing HDPE/GTR blends shows a higher tanδ peak temperature and a broaden transition peak for GTR phase.

 

Key words: in-situ reactive compatibilization; high-density polyethylene (HDPE); ground tire rubber (GTR); thermoplastic phenolic resin; dicumyl peroxide (DCP)

 

CLD number: O63  Document code: A

 

Article ID: 1674-8042(2017)02-0185-10  doi: 10.3969/j.issn.1674-8042-2017-02-012

 

References

 

[1]Formela K, Sulkowski M, Saeb M, et al. Assessment of microstructure, physical and thermal properties of bitumen modified with LDPE/GTR/elastomer ternary blends. Construction and Building Materials, 2016, 106: 160-167.
[2]Lima P, Silva S, Oliveira J, et al. Rheological properties of ground tyre rubber based thermoplastic elastomeric blends. Polymer Testing, 2015, 45(5): 58-67.
[3]Hrdlicka Z, Cebria P, Stefan V, et al. Thermoplastic elastomeric blends based on waste tires and polyethylene: the role of rubber particle size. Progress in Rubber Plastics and Recycling Technology, 2016, 32(3): 129-142.
[4]Magioli M, Sirqueira A, Soares B. The effect of dynamic vulcanization on the mechanical, dynamic mechanical and fatigue properties of TPV based on polypropylene and ground tire rubber. Polymer Testing, 2010, 29(7): 840-848.
[5]Grigoryeva O, Fainleib A, Tolstov A, et al. Thermoplastic elastomers based on recycled high-density polyethylene, ethylene-propylene-diene monomer rubber, and ground tire rubber. Journal of Applied Polymer Science, 2005, 95(3): 659-671.
[6]Sonnier R, Leroy E, Clerc L, et al. Compatibilizing thermoplastic/ground tyre rubber powder blends: Efficiency and limits. Polymer Testing, 2008, 27(7): 901-907.
[7]Nakason C, Nuansomsri K, Kaesaman A, et al. Dynamic vulcanization of natural rubber/high-density polyethylene blends: Effect of compatibilization, blend ratio and curing system. Polymer Testing, 2006, 25(6): 782-796.
[8]Soni R, Singh H, Dutt K, et al. Effect of dynamic cross-linking on mixing torque behavior and tensile yield behavior of isotactic polypropylene (iPP) ethylene-propylene diene rubber (EPDM) nitrile rubber (NBR) elastomeric blends. Journal of Polymer Research, 2010, 17(3): 411-427.
[9]Kakroodi A, Rodrigue D. Highly filled thermoplastic elastomers from ground tire rubber, maleated polyethylene and high density polyethylene. Plastics Rubber and Composites, 2013, 42(3): 115-122.
[10]Jahani Y, Ghetmiri M, Vaseghi M. The effects of long chain branching of polypropylene and chain extension of poly(ethylene terephthalate) on the thermal behavior, rheology and morphology of their blends. Rsc Advances, 2015, 5(28): 21620-21628.
[11]Pechurai W, Sahakaro K, Nakason C. Influence of phenolic curative on crosslink density and other related properties of dynamically cured NR/HDPE blends. Journal of Applied Polymer Science, 2009, 113(2): 1232-1240.
[12]Tanrattanakul V, Kosonmetee K, Laokijcharoen P. Polypropylene/natural rubber thermoplastic elastomer: effect of phenolic resin as a vulcanizing agent on mechanical properties and morphology. Journal of Applied Polymer Science, 2009, 112(6): 3267-3275.
[13]Verdurmen-Noel L, Baldo L, Bremmers S. SEC-FTIR characterization of semi-crystalline HDPE and PP. Polymer, 2001, 42(13): 5523-5529.
[14]CHEN Yang, ZOU Hua-wei, LIANG Mei, et al. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends. Thermochimica Acta, 2014, 586: 1-8.
[15]CHEN Yun-kun, XU Chuan-hui, LIANG Xing-quan, et al. In situ reactive compatibilization of polypropylene/ethylene-propylene-diene monomer thermoplastic vulcanizate by zinc dimethacrylate via peroxide-induced dynamic vulcanization. Journal of Physical Chemistry B, 2013, 117(36): 10619-10628.
[16]Formela K, Korol J, Saeb M. Interfacially modified LDPE/GTR composites with non-polar elastomers: from microstructure to macro-behavior. Polymer Testing, 2015, 42(1): 89-98.
[17]BAI Shu-lin, WANG Gong-tao, Hiver J, et al. Microstructures and mechanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends. Polymer, 2004, 45(9): 3063-3071.
[18]Pawlak A. Cavitation during tensile deformation of high-density polyethylene. Polymer, 2007, 48(5): 1397-1409.
[19]Pawlak A. Cavitation during tensile deformation of isothermally crystallized polypropylene and high-density polyethylene. Colloid and Polymer Science, 2013, 291(4): 773-787.
[20]Oderkerk J, Groeninckx G, Soliman M. Investigation of the deformation and recovery behavior of nylon-6/rubber thermoplastic vulcanizates on the molecular level by infrared-strain recovery measurements. Macromolecules, 2002, 35(10): 3946-3954.
[21]Oderkerk J, Schaetzen G, Goderis B, et al. Micromechanical deformation and recovery processes of nylon-6/ rubber thermoplastic vulcanizates as studied by atomic force microscopy and transmission electron microscopy. Macromolecules, 2002, 35(17): 6623-6629.
[22]Nikolova M, Mateev M. Influence of fillers on the deformation behaviour of crosslinked HDPE. Part I. Chemical crosslinking. Polymer Degradation and Stability, 1991, 31(1): 89-96.
[23]Harrell E, Nakajima N. Modified cole-cole plot based on viscoelastic properties for characterizing molecular architecture of elastomers. Journal of Applied Polymer Science, 1984, 29(3): 995-1010.
[24]Bengtsson M, Gatenholm P, Oksman K. The effect of crosslinking on the properties of polyethylene/wood flour composites. Composites Science and Technology, 2005, 65(10): 1468-1479.
[25]Bengtsson M, Oksman K. The use of silane technology in crosslinking polyethylene/wood flour composites. Composites Part A: Applied Science and Manufacturing, 2006, 37(5): 752-765.
[26]WANG Long, YANG Ming-bo, ZHANG Quan-ping, et al. Hierarchical crystalline structures and dynamic mechanical properties of injection-molded bars of HDPE: attributes of temperature field. Polymers for Advanced Technologies, 2013, 24(6): 541-550.
[27]Menard K. Dynamic mechanical analysis a practical Introduction, 2nd ed.. Boca Raton: Taylor & Francis Group, 2008.
[28]Patel A, Bajpai R, Keller J. On the crystallinity of PVA/palm leaf biocomposite using DSC and XRD techniques. Microsystem Technologies Micro and Nanosystems Information Storage and Processing Systems, 2014, 20(1): 41-49.
[29]Gupta B, Agarwal R, Alam M. Preparation and characterization of polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose blend membranes. Journal of Applied Polymer Science, 2013, 127(2): 1301-1308.
[30]Boldt R, Gohs U, Wagenknecht U, et al. Effect of electron-induced reactive processing on morphology and structural properties of high-density polyethylene. Polymer, 2016, 95(4): 1-8.

 

过氧化二异丙苯和酚醛树脂对HDPE/GTR共混物的原位反应性增容

 

贺茂勇1, 李迎春1, 白培康1, 王文生1, 贾帅2

 

(1. 中北大学 材料科学与工程学院, 山西 太原 030051;2. 中北大学 化工与环境学院, 山西 太原 030051)

 

摘要:采用过氧化二异丙苯(DCP)和热塑性酚醛树脂(HY-2045)在未添加催化剂时实现了对高密度聚乙烯(HDPE)/废旧轮胎胶粉(GTR)共混物的原位反应性增容, 并研究了其对共混物的微观形貌、 应力-应变曲线、 动态力学性能和结晶性能的影响。 扫描电镜结果显示, 共混物橡塑界面处有大量的纤维状物质同时嵌入到基体相和分散相中, 使得共混物的界面强度得到显著增加, 从而获得较好的综合力学性能。 差式扫描热量(DSC)和X射线衍射(XRD)测试结果表明, 原位增容后的共混物的结晶度显著降低, 致使其明显的拉伸屈服现象消失。 由于反应型增容剂DCP和HY-2045使得共混物在界面处形成化学交联, 尽管其结晶度有所降低, 但是其拉伸强度和断裂伸长率还是得到了显著的增加。 另外, 动态力学性能测试表明, 增容后的HDPE/GTR共混物中GTR相的玻璃化转变峰变宽, 玻璃化转变温度升高。

 

关键词:原位反应性增容; 高密度聚乙烯; 废旧轮胎胶粉; 热塑性酚醛树脂; 过氧化二异丙苯

 

引用格式:HE Mao-yong, LI Ying-chun, BAI Pei-kang, et al. In-situ reactive compatibilization of HDPE/GTR blends by dicumyl peroxide and phenolic resin without catalyst. Journal of Measurement Science and Instrumentation, 2017, 8(2): 185-194. [doi: 10.3969/j.issn.1674-8042.2017-02-012]

 

[full text view]