此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Microwave Diagnostics for Studies of Electromagnetic Scattering by Fluorescent Lamp Plasma

Xiang HE(何湘)1, Jian-ping CHEN(陈建平)2,  Ying WU (吴莹)1 ,  Yu-dong CHEN(陈玉东)2, Xiao-jun ZENG(曾小军)2, Hai-chao QIN(秦海潮)2, Xiao-wu NI(倪晓武)1

 

 

 

1. College of Science, Nanjing University of Science & Technology , Nanjing 210094, China;2. Beijing Aeronautical Technology Research Center, Beijing 100076, China

 

Abstract-This paper reports a related microwave diagnostic met hod that measures both the electron number density and the electron-neutral col lision frequency, which are crucial to understand the behavior of microwave trav eling in plasma. Arrays of standard commercial fluorescent lamp placed directly  against each other in two rows are used to produce a plasma layer. Attenuations  of microwave by plasma layer are studied experimentally in the frequencies of 1 ~8 GHz using a synthesized signal generator and a spectrum analyzer. Two wave- polarizations are under investigation: electric field of the wave is either para llel (E-wave) or perpendicular (H-wave) to the fluorescent lamp axis.  The electron number density and the electron-neutral collision frequency of flu orescent lamp plasma are obtained by microwave diagnostics, for the purpose of a nalyzing microwave scattering characteristics by plasma.


Key words-plasma; microwave; microwave diagnostics; att enuation; absorption


Manuscript Number: 1674-8042(2010)01-0054-04


dio: 10.3969/j.issn.1674-8042.2010.11


References


[1]L. Overzet, B. Hopkins, 1993.  Comparison of electron-density measu rements made using a Langmuir probe and microwave interferometer in the Gaseous  electronics conference reference reactor. J. Appl. Phys., 74  (7): 4323-4330.

[2]M. K Howlader, Y. Q Yang, J. R Roth, 2005. Time-resolved measuremen ts of electron number density and collision frequency for fluorescent lamp plasm a using microwave diagnostics. IEEE Trans. Plasma Sci., 33(3) : 1093-1099.

[3]S. Ohler, B. Gilchrist, A. Gallimore, 1995. Nonintrusive electron nu mber density measurements in the plume of 1 kW arcjet using a modern microwave i nterferometer. IEEE Trans. Plasma Sci., 23(3): 428-435.

[4]C. Lukas, M. Muller, V. Gathen, et al, 1999. Spatially resolved elec tron number density distribution in an RF excited parallel plate plasma reactor  by 1 mm microwave interferometry. Plasma Sources Sci. Technol., 8: 94-99.

[5]B. Gilchrist, S. Ohler, A. Gallimore, 1997. Flexible microwave syste m to measure the electric thruster plasma plumes. Rev. Sci. Intrum., 68(2): 1189-1194.

[6]K. Stalder, R. Vidmar, D. Eckstrom, 1992. Observations of strong mic rowave absorption in collisional plasma with gradual density gradients. J. Appl Phys., 72: 5089-5094.

[7]Z. C. Yuan, J. M. Shi, 2005. Plasma diagnostic method using the tran smission attenuation of microwaves at double frequencies. Nuclear Fusi on and Plasma Physics, 25(1): 78-80.

[8]J. Y. Wang, J. M. Shi, Z. C. Yuan, et al, 2007. Plasma diagnostic me thod using the transmission attenuation of microwaves at three frequencies. High Power Laser and Particle Beams, 19(4): 621-624.

[9]R. J. Gregoire, J. Santoru, R. W. Schumacher, 1992. Electromagnetic -wave Propagation in Unmagnetized Plasmas. AD-A250710.

[10]A. V. Danilov, S. A Ilchenko, A. T Kunavin, et al. Electromagnetic  waves scattering by periodic plasma structure. Physica A, 199 7(214): 226-230.


[full text view]