Hidetaka ITO, Yusuke MOCHIDA, Akira KUMAMOTO
Department of Electrical and Electronic Engineering, Kansai University, Osaka, Japan
Abstract—We present a numerical method for efficiently detecting unstable periodic orbits (UPO's) embedded in chaotic attractors of high-dimensional systems. This method, which we refer to as subspace fixed-point iteration, locates fixed points of Poincaré maps using a form of fixed-point iteration that splits the phase space into appropriate subspaces. In this paper, among a number of possible implementations, we primarily focus on a subspace method based on the Schmelcher-Diakonos (SD) method that selectively locates UPO's by varying a stabilizing matrix, and present some applications of the resulting subspace SD method to hyperchaotic attractors where the UPO's have more than one unstable direction.
Keywords—nonlinear dynamics; chaos; unstable periodic orbits; numerical analysis; subspaces
Manuscript Number: 1674-8042(2010)supp.-0053-04
dio: 10.3969/j.issn1674-8042.2010.supp..14
References
[1] S. Kida: Turbulence captured by unstable periodic motion, Nagare, vol.23, pp.319-327 (2004).
[2] Y. Saiki: Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors, Nonlinear Processes in Geophysics, vol.14, pp.615-620 (2007).
[3] P. Schmelcher and F. K. Diakonos: General approach to the localization of unstable periodic orbits in chaotic dynamical systems, Phys. Rev. E, vol.57, no.3, pp.2739-2746 (1998).
[4] R. L. Davidchack and Y. -C. Lai: Efficient algorithm for detecting unstable periodic orbits in chaotic systems, Phys. Rev. E, vol.60, no.5, pp.6172-6175 (1999).
[5] H. Ito and Y. Ueda: An efficient Newton algorithm for periodic orbits of high-dimensional nonlinear non-autonomous dynamical systems, Proc. 1993 IEICE Spring Conference, A-62 (1993).
[6] H. Ito and A. Kumamoto: Locating fold bifurcation points using subspace shooting, IEICE Trans. Fundamentals, vol.E81-A, no.9, pp.1791-1797 (1998).
[7] G. M. Shroff and H. B. Keller: Stabilization of unstable procedures: The recursive projection method, SIAM J. Numer. Anal., vol.30, no.4, pp.1099-1120 (1993).
[8] D. Roose, K. Lust, A. Champneys, and A. Spence: A Newton-Picard shooting method for computing periodic solutions of large-scale dynamical systems, Chaos Solitons & Fractals, vol.5, no.10, pp.1913-1925 (1995).
[9] H. Ito, M. Murakita, and A. Kumamoto: Locating unstable periodic orbits using subspace fixed-point iteration, Proc. 2000 International Symposium on Nonlinear Theory and its Applications, pp.421-424 (2000).
[10] I. Wakabayashi, Y. Mizuno, H. Ito, and A. Kumamoto: Detecting unstable periodic orbits in high-dimensional systems using subspace fixed-point iteration, Proc. 2003 IEICE General Conference, A-2-1 (2003).
[11] H. Ito, K. Kuwabara, Y. Yukawa, and A. Kumamoto: Convergence analysis of subspace fixed-point iteration for detecting unstable periodic orbits, Proc. 2009 CACS International Automatic Control Conference, Paper ID #00248, pp.1-4 (2009).
[12] K. Ikeda: Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., vol.30, no.2, pp.257-261 (1979).
[13] O. E. Rössler: An equation for hyperchaos, Phys. Lett. A, vol.71, pp.155-157 (1979).
[full text view]