此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Properties and characterization of 1-methy-4, 5-dinitroimidazole

 

AN Chong-wei, LI He-qun

 

(School of Chemical and Enviromental Engineering, North University of China, Taiyuan 030051, China)

 

Abstract: X-ray diffraction (XRD), differential scanning calorimeter (DSC) and impact sensitivity instrument were used to characterize the properties of 1-Methyl-4, 5-dinitroimidazole (MDNI). Furthermore, specific heat capacity, thermal kinetic parameters, thermal decomposition reaction rate constant, critical explosion temperature and the drop height for impact initiation of MDNI were calculated and analyzed. The results show that MDNI is well-crystallized. The melting point of MDNI is about 74 ℃, and the specific heat capacity of MDNI is 9.314 4 J/(g·K) and 10.596 0 J/(g·K) when the temperature is 60 ℃ and 90 ℃, respectively. The apparent activation energy and pre-exponential factor of MDNI are calculated as 81.62 kJ/mol and 6.78×107 s-1, respectively. The relationship between thermal decomposition reaction rate constant of MDNI and temperature is logk=7.83-4268.11/T. The critical temperature of MDNI thermal explosion is 234.86 ℃. The drop height for impact initiation of MDNI is 95.3 cm.

 

Key words: 1-Methyl-4, 5-dinitroimidazole; X-ray diffraction (XRD); thermal decomposition; kinetic; impact sensitivity

 

CLD number: TJ55Document code: A

 

Article ID: 1674-8042(2015)01-0083-06  doi: 10.3969/j.issn.1674-8042.2015.01.015

 

References

 

[1] WANG Qin-hui. Overview of carrier explosive for melt-cast composite explosive. Chinese Journal of Explosives & Propellants, 2011, 34 (5): 25-28.
[2] Ampleman G, Brousseau P, Thiboutot S, et al. Evaluation of GIM as a greener insensitive melt-cast explosive. International Journal of Energetic Materials and Chemical, 2012, 11 (1): 59-87.
[3] Monteil-Rivera F, Deschamps S, Ampleman G, et al. Dissolution of a new explosive formulation containing TNT and HMX: comparison with octol. Journal of Hazardous Materials, 2010, 174(1/2/3): 281-288.
[4] Becuwe A, Delclos A. Low-sensitivity explosive compounds for low vulnerability warheads. Propellants, Explosives, Pyrotechnics, 1993, 18 (1): 1-10.
[5] HUANG Hui, WANG Ze-shan, HUANG Heng-jian, et al. Researches and progresses of novel energetic materials. Chinese Journal of Explosives & Propellants, 2005, 28 (4): 9-13.
[6] ZHAO Chao. Research progress and trend of insensitive high mixture explosive. Ordnance Industry Automation, 2013, 32 (1): 67-70.
[7] ZHOU Yan-shui, WANG Bo-zhou, LI Jian-kang, et al. Study on synthesis, characterization and properties of 3, 4-Bis(4`-nitrofurazano-3`-yl)furoxan. Acta Chimica Sinica, 2011, 69 (14): 1673-1680.
[8] WANG Qin-hui. Properties of DNTF-based melt-cast explosives. Chinese Journal of Explosives & Propellants, 2003, 26 (3): 57-59.
[9] WANG Qin-hui A new melt-cast explosive formulation. Chinese Journal of Energetic Materials, 2004, 12 (1): 46-47.
[10] Doll D W, Hanks J M, Highsmith T K, et al. Reduced sensitivity melt-cast explosives. U.S. patent 6648998B2, 2003.
[11] ZHANG Guang-quan, DONG Hai-shan.. Review on melt-castable explosives based on 2, 4-Dinitroanisole. Chinese Journal of Energetic Materials, 2010, 18 (5): 604-609.
[12] JIANG Qiu-li, WANG Hao, LUO Yi-ming, et al. Thermal behaviors of 3, 4-Dinitrophyrazole and its compatibility with some explosive component materials. Chinese Journal of Energetic Materials, 2013, 21 (3): 297-300.
[13] WANG Ying-lei, JI Yue-ping, CHEN Bin, et al. Improved synthesis of 3,4-Dinitrophyrazole. Chinese Journal of Energetic Materials, 2011, 19 (4): 377-379.
[14] Capellos C, Travers B E. High energy melt cast explosive. U.S. patent 5717158A, 1998.
[15] Sikder N, Sikder A K, Bulakh N R, et al.1, 3, 3-Trinitroazetidine(TNAZ), a melt-cast explosive: synthesis,characterization and thermal behaviour. Journal of Hazardous Materials, 2004, 113 (1-3): 35-43.
[16] Hervé G, Roussel C, Graindorge H. Selective Preparation of 3, 4, 5-Trinitro-1H-Pyrazole: A Stable All-Carbon-Nitrated Arene. Angewandte Chemie International Edition, 2010, 49 (18): 3177-3178.
[17] WANG Xiao-jun, CAO Duan-lin, LI Yong-xiang, et al. New technology for synthesis of 1-Methyl-2, 4, 5-trinitroimidazole. Chinese Journal of Explosives & Propellants, 2009, 32 (3): 16-18.
[18] CAO Duan-lin, LI Yong-xiang, DU Yao, et al. Review on carriers for melt-cast explosives. Chinese Journal of Energetic Materials, 2013, 21(2): 157-165.
[19] SONG lei, WANG Jian-long, LI Yong-xiang, et al. Synthesis and characterization of 1-Methyl-4, 5-dinitroimidazole. Chinese Journal of Energetic Materials, 2009, 17 (5): 531-533.
[20] CAO Duan-lin, WANG Xiao-jun, YANG Cai-yun, et al. Synthesis of 1-Methyl-4, 5-dinitroimidazole. Chinese Journal of Energetic Materials, 2009, 17 (6): 678-680.
[21] LI Yong-xiang, CAO Duan-lin, WANG Xiao-jun, et al. Crystal structure and thermal decomposition of 1-Methyl-4, 5-dinitroimidazole. Chinese Journal of Explosives & Propellants, 2011, 34 (6): 17-20.
[22] CHEN Li-zhen, WANG Xiao-jun, GENG Tian-qi, et al. Crystal structure and thermal decomposition of 1-Methyl-4, 5-dinitroimidazole. Journal of North University of China (Natural Science Edition), 2012, 33 (2): 159-163.
[23] Commission on Science,Technology,and Industry for National Defense. GJB-772A, Experimental method of sensitivity and safety. Beijing: standardization center of the commmission of science technology and industry for national defense of china, 1997.
[24] AN Chong-wei, LI He-qun, GENG Xiao-heng et al. Preparation and properties of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide based nanocomposites. Propellants, Explosives, Pyrotechnics, 2013, 38 (2): 172-175.
[25] AN Chong-wei, GENG Xiao-heng, WANG Jing-yu, et al. Effects of particle size on thermal decomposition of CL-20. Science and Technology of Energetic Materials, 2012, 73 (6): 175-180.
[26] Sovizi M R, Hajimirsadeghi S S, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. Journal of Hazardous Materials, 2009, 168 (2-3): 1134-1139.
[27] Zhang T L, Hu R Z, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochimica Acta, 1994, 244: 171-176.

 

1-甲基-4,5-二硝基咪唑的性能与表征

 

安崇伟, 李鹤群

 

(中北大学 化工与环境学院, 山西 太原 030051)

 

摘要:采用X射线衍射仪(XRD)、 差示扫描量热仪(DSC)和撞击感度仪分别对1-甲基-4,5-二硝基咪唑(MDNI)的性能进行表征。 并对MDNI样品的比热容、 热动力学参数、 热分解反应速率常数、 临界爆炸温度和撞击特性落高进行计算和分析。 结果表明, MDNI样品为晶体结构且结晶良好。 MDNI的熔点在74 ℃左右, 在60 ℃和90 ℃时的比热容分别为9.314 4 J/(g·K)和10.596 0 J/(g·K)。 MDNI的表观活化能为81.62 kJ/mol, 指前因子为6.78×107, 热分解反应速率常数(k)与温度的关系为logk=7.83-4268.11/T, 临界爆炸温度为234.86 ℃, 特性落高H50为95.3 cm。

 

关键词:1-甲基-4,5-二硝基咪唑; XRD; 热分解; 动力学; 撞击感度

 

引用格式:AN Chong-wei, LI He-qun. Properties and characterization of 1-methy-4, 5-dinitroimidazole. Journal of Measurement Science and Instrumentation, 2015, 6(1): 83-88. [doi: 10.3969/j.issn.1674-8042.2015.01.015]

 

[full text view]