此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Direct and real-time sub-wavelength resolution photoacoustic imaging method based on acoustic lens with negative refractive index

 

HAN Jian-ning,  GUI Zhi-guo, WEN Ting-dun,  TIAN Er-ming, YANG Peng,  ZHANG Quan

 

(School of Information and Communication Engineering, North University of China. Taiyuan 030051, China)

 

Abstract: The signal processing technology based on material with negative refractive index provides researchers with the latest ideas. As a new nondestructive bio-photonic technology, photoacoustic tomography is a kind of imaging method based on the differences of optical absorption within the biological organization. However, photoacoustic tomography by the scanning sensor or by the sensors array at present has its inherent disadvantages that may lead to poor real-time performance and high cost in the imaging process. The characteristics of acoustic lens with negative refractive index such as focusing, filtering and directional control on acoustic wave, are very suitable for solving the problem in photoacoustic tomography. With an analysis on the negative quality response of acoustic lens and the advantages of negative refractive imaging, we proposed an approach using the lens to change the current photoacoustic imaging methods. The experiment showed that the imaging effectiveness of photoacoustic tomography by the designed lens is very impressive that the pressure distribution of the absorber is basically consistent with the image of the absorber. In addition, the result of 0.6 times wavelength in the experimental image is demonstrated on sub-wavelength photoacoustic imaging through the lens designed in this work.
Key words: photoacoustic tomography; acoustic lens; negative refraction; sub-wavelength resolution

 

CLD number: O439  Document code: A

 

Article ID: 1674-8042(2016)04-0388-010  doi: 10.3969/j.issn.1674-8042-2016-04-014

 

References

 

[1]Veselago V G,  Lebedev P N. The electrodynamics of substances with simultaneously negative values of and. Sov. Phys. Usp., 1968, 10(4): 509-514.
[2]Pendry J B. Negative refraction makes aperfect lens. Physical Review Letters, 2000, 85(18): 3966.
[3]Bao C, Castresana J M. Chiral waves in a metamaterial medium. In SPIEPhotonics Europe International Society for Optics and Photonics, 2010: 77111Y.
[4]Al-Lethawe M A, Addouche M, Khelif A, et al. All-angle negative refraction for surface acoustic waves in pillar-based two-dimensional phononic structures. New Journal of Physics, 2012, 14(12): 123030.
[5]WU Liang-yu, CHEN Lien-wen, Wang R C C. Dispersion characteristics of negative refraction sonic crystals. Physica B: Condensed Matter, 2008, 403(19): 3599-3603.
[6]ZHANG Shu, YIN Lei-lei, Fang N. Focusing ultrasound with an acoustic metamaterial network. Physical Review Letters, 2009, 102(19): 194301.
[7]Gan W S. Acoustical imaging with negative refraction. inacoustical imaging. Springer Netherlands, 2007, 28: 461-466.
[8]Alagoz S, Kaya O A, Alagoz B B. Frequency-controlled wave focusing by a sonic crystal lens. Applied Acoustics, 2009, 70(11): 1400-1405.
[9]Alagoz S. An investigation on acoustic wave focalization by a square lattice flat lens. Archives of Acoustics, 2012, 37(1): 81-87.
[10]Pramanik M, Ku G, Li C, Wang L V. Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography. Medicalphysics, 2008, 35(6): 2218-2223.
[11]Achilefu S, Dorshow R B, Bugaj J E, et al. Novel receptor-targeted fluorescent contrastagents for in vivo tumor imaging. Investigative radiology, 2000, 35(8): 479-485.
[12]WANG Xue-ding. Functional photoacoustic tomography of animal brains. USA:Texas A&M University, 2004.
[13]WANG Hui, XING Da, XIANG Liang-zhong. Photoacoustic imaging using an ultrasonic Fresnel zone plate transducer. Journal of Physics D: Applied Physics, 2008, 41(9): 95-111.
[14]Maslov K, ZHANG Hao F, HU Song, et al. Optical-resolution photoacoustic microscopy.Optics letters, 2008, 33(9): 929-931.
[15]WANG Li-hong V,  HU Song. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 2012, 335(6075): 1458-1462.
[16]HU Song, Maslov K, Tsytsarev V, et al. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. Journal of Biomedical Optics, 2009, 14(4): 152-157.
[17]WANG Xue-ding, PANG Yong-jiang, KU Gang, et al. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Optics Letters, 2003, 28(19): 1739-1741.
[18]WANG Yi, XING Da, ZENG Ya-guang, et al. Photoacoustic imaging with deconvolution algorithm. Physics in Medicine and Biology, 2004, 49(14): 3117-3124.
[19]YANG Di-wu, XING Da, GU Huai-min, et al. Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm. Applied Physics Letters, 2005, 87(19): 194101-194104.
[20]Kruger R A, Kiser J W L, Reinecke D R, et al. Thermoacoustic computed tomography using a conventional linear transducer array. Medical Physics, 2003, 30(5): 856-860.
[21]Oraevsky A A, Karabutov A A, Solomatin S V, et al. Laser optoacoustic imaging of breast cancer in vivo. The International Symposium on Biomedical Optics. International Society for Optics and Photonics, 2001, 4256: 6-15.
[22]YIN Bang-zheng, XING Da, WANG Yi, et al. Fast photoacoustic imaging system based on 320-element linear transducer array.Physics in medicine and biology, 2004, 49(7): 1339-1346.
[23]CHEN Zhen-xu, TANG Zhi-lie, WAN Wei, et al. Photoacoustic  tomography imaging based on an acoustic lens imaging system.  Acta Physica Sinica, 2006, 55(8): 4365-4369.
[24]CHEN Zhen-xu, TANG Zhi-lie, WAN Wei. Photoacoustic tomography imaging based on a 4f acoustic lens imaging system. Optics Express, 2007,15(8): 4966-4976.
[25]WEI Ya-dong, TANG Zhi-lie, CHEN Xian, et al. Fast photoacoustic tomography by use of acoustic lens. In Journal of Physics: Conference Series, 2011, 277(1): 12-39.
[26]Rao N A, LAI Di, Bhatt S, et al. Acoustic lens characterization for ultrasound and photoacoustic C-scan imaging modalities. Conf Proc IEEE Eng Med Biol Soc, 2008(1): 2177-2180.
[27]SONG Chao-long, XI Lei, JIANG Huai-bei. Liquid acoustic lens for photoacoustic tomography. Optics Letters, 2013, 38(15): 2930-2933.
[28]Pramanik M, KU Gang, WANG Li-hong  V. Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens. Journal of Biomedical Optics, 2009, 14(2): 24-28.
[29]HAN Jian-ning, WEN Ting-dan, YANG Peng, et al. Negative refraction imaging of acoustic metamaterial lens in the supersonic range. AIP Advances, 2014, 4(5): 3094-3099.
[30]LI Chang-hui, WANG Li-hong V. Photoacoustic tomography and sensing in biomedicine. Physics in Medicine and Biology, 2009, 54(19): 59-97.

 

基于负折射率声透镜的亚波长分辨率光声实时成像方法

 

韩建宁, 桂志国, 温廷敦, 田二明, 杨鹏, 张权

 

(中北大学 信息与通信工程学院,  山西 太原 030051)

 

摘要:基于负折射率材料的信号处理技术为光声图像的研究提供了新的思路。 光声成像是一种全新的非破坏性生物光子技术, 是一种基于生物组织内光吸收差异的成像方法。 然而, 当前的光声成像方法主要依靠传感器扫描工作, 而传感器阵列有其固有的缺点, 导致实时性较差, 因此, 普通的光声成像方式具有一定的局限性。 但是, 利用具有负折射率的声透镜特性(如聚焦、 滤波、 定向等)构成的成像方式可以解决普通光声成像中的这些局限性问题。 本文在对负折射率声透镜的负质量响应和负折射率成像进行优势分析后, 提出了利用声透镜改变当前扫描成像的方法。 模拟分析实验结果表明, 所设计的声透镜直接成像方案达到了预期效果, 透镜成像后像点的声压分布与吸收体原始的声压分布基本一致。 此外, 0.6倍波长的实验图像结果说明本文实现了亚波长的光声成像效果。

 

关键词:光声成像; 声透镜; 负折射率; 亚波长分辨率

 

引用格式:HAN Jian-ning,  GUI Zhi-guo, WEN Ting-dun,  et al. Direct and real-time sub-wavelength resolution photoacoustic imaging method based on acoustic lens with negative refractive index. Journal of Measurement Science and Instrumentation, 2016, 7(4): 388-397. [doi: 10.3969/j.issn.1674-8042.2016-04-014]

 

[full text view]