此页面上的内容需要较新版本的 Adobe Flash Player。

获取 Adobe Flash Player

Design of fiber-optic collector for spectrometer based on curved mirror


ZHUANG Xin-gang1,2,3, WANG Li-li1,3, SHAO Xiu-mei4, FANG Jia-xiong1,4, JIANG Ben-he1

 

(1. Advanced Research Center for Optics, Shandong University, Jinan 250100, China;2. School of Information Science and Engineering, Shandong University, Jinan 250100, China;3. State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;4. State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China)

 

Abstract: To enlarge the detection range of traditional fiber-optic spectrometer, two rotating parabolic mirrors were first used in the design of fiber-optic collector for spectrometer, which can extend the detection range of spectrometer from centimeter-scale to 50 m, as a super-low altitude remote sensing detector under passive lighting conditions. According to the performance requirements of fiber-spectrometer for optical collector, this study deduced the calculation formulae of design size of parabolic optical collector applied to different sensitivity spectrometers, different detection targets, different detection ranges and different weathers. Based on the calculation results, the model of fiber-optic collector with a diameter of 16 mm and a height of 7.8 mm was designed by ZEMAX. And then, TracePro, a light simulation software, was applied to ray tracing. The simulation results of optical radiation magnification agrees well with theoretical value, and the relative error is less than 0.78%. This optical collector can effectively extend the detection range of spectrometer and expand its application fields and scopes. Compared with traditional refractive optical collector, it has several advantages of compact structure, low weight and low cost.

 

Key words: fiber-optic collector; fiber-spectrometer; rotating parabolic mirror; infrared radiation atmospheric transmission

 

CLD number: O439 Document code: A


Article ID: 1674-8042(2017)01-0097-06doi: 10.3969/j.issn.1674-8042201701015

 

References

 

[1]ZHANG Cheng-ye, QIN Qi-ming, CHEN Li, et al. Research and development of mineral identification utilizing hyperspectral remote sensing. Optics and Precision Engineering, 2015, 23(8): 2407-2418.
[2]FENG Shu-yi, ZHANG Ning, SHEN Ji, et al. Method of cloud detection with hyperspectral remote sensing image based on the reflective characteristics. Chinese Optics, 2015, (2): 198-204.
[3]LI Zi-yang, QIAN Yong-gang, SHEN Qing-feng, et al. Leaf area index retrieval from remotely sensed hyperspectral data. Infrared and Laser Engineering, 2014, 43(3): 944-949.
[4]BAO Yi-dan, CHEN Na, HE Yong, et al. Rapid identification of coffee bean variety by near infrared hyperspectral imaging technolog. Optics and Precision Engineering, 2015, 23(2): 349-355.
[5]LIANG Dong, YANG Qin-ying, HUANG Wen-jiang, et al. Estimationof leaf areaindexbasedonwavelet transformand support vector machine regression in winter wheat. Infrared and Laser Engineering, 2015, (1): 335-340.
[6]LIANG Jing-qiu, LIANG Zhong-zhu, LV Jin-guang, et al. Micro spatial modulation Fourier transform infrared spectrometer. Chinese Optics, 2015, (2): 277-298.
[7]Imani H, Sarkhani S. High spectral range, high speed fiber optic spectrometer. Optik-International Journal for Light and Electron Optics, 2015, 126(15/16): 1419-1422.
[8]YU Tao-ran, WANG Chao, TANG Xiao-jun, et al. Design of two-dimensional zoom beam expender optical system based on ZEMAX. Laser and Infrard, 2016, 46(6): 747-751.
[9]YAN Xing-tao, YANG Jian-feng, ZHANG Guo-qiang, et al. Design of freeform surface LED reflectors for uniform illumination based on compensation method. Infrared and Laser Engineering, 2012, (3): 718-723.
[10]LI Tian-hua, LI Hai-liang. Study in application of optical fiber spotlight illumination system to greenhouse. Journal of Agricultural Mechanization Research, 2012, 34(7): 204-206.
[11]LI Min. Research on the key technology of sunlight illumination. Chongqing: Chongqing University, 2008.
[12]TANG Yong, LI Yu-yao. ZEMAX’s application in dimension calculation of optical design. Journal of Changchun University of Science and Technology (National science edition), 2009, (2): 193-196.
[13]ZHANG Yu-xiang, HUANG Yi-bin, ZHANG Guang-shun. The soil reflectance measurement with short wave infrared spectrum. Quarterly Journal of Applied Meteorology, 1995, (1): 95-100.
[14]ZHANG Jian-qi, FANG Xiao-ping. Infrared physics. Xi’an: Xi’an University Press, 2004.
[15]Weather Underground. 2016-12-18. https:∥www.wunderground.com.

 

基于曲面反射镜的光谱仪用光纤集光器设计

 

庄新港1,2,3, 王丽丽1,3, 邵秀梅4, 方家熊1,4, 蒋本和1

 

(1. 山东大学 光学高等研究中心, 山东 济南 250100; 2. 山东大学 信息科学与工程学院, 山东 济南 250100;3. 中国科学院 上海微系统与信息技术研究所传感技术联合国家重点实验室, 上海 200050; 4. 中国科学院 上海技术物理研究所传感技术联合国家重点实验室, 上海 200083)

 

摘要:为了提高传统光纤光谱仪的探测距离, 首次提出采用两片旋转抛物面反射镜进行光谱仪用光纤集光器入射光学设计, 将光谱仪探测距离从厘米量级提高到50 m, 可用于户外被动光源条件下超低空遥感探测。 从光纤光谱仪对集光器的性能要求出发, 推导出适用于不同灵敏度光纤光谱仪, 针对不同探测目标、 探测距离和不同天气条件下的抛物型集光器外围尺寸计算公式。 根据计算结果, 利用ZEMAX光学仿真软件设计出直径16 mm, 高7.8 mm的光纤集光器模型, 并利用TracePro光纤模拟软件进行追光分析, 光学辐射放大率的仿真结果与理论计算结果完全吻合, 误差小于0.78%。 该集光器的设计可有效提高光纤光谱仪探测距离, 拓展其应用领域和范围, 且与传统透射型集光器相比, 具有结构紧凑、 轻便化、 价格低廉等优点。


关键词:光纤集光器; 光纤光谱仪; 抛物面反射镜; 红外辐射大气传输

 

引用格式:ZHUANG Xin-gang, WANG Li-li, SHAO Xiu-mei, et al. Design of fiber-optical collector for spectrometer based on curved mirror. Journal of Measurement Science and Instrumentation, 2017, 8(1): 97-102. [doi: 10.3969/j.issn.1674-8042.201701015]

 

[full text view]