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Facial model fitting algorithm based on active appearance model
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Abstract: Active appearance model(AAM) is an efficient method for the localization of facial feature points, which is also
useful for the subsequent work such as face detection and facial expression recognition. In this paper, we mainly discuss the
AAMs based on principal component analysis (PCA). We also propose an efficient facial fitting algorithm, which is named
inverse compositional image alignment (ICIA), to eliminate a considerable amount of computation resulting from traditional
gradient descent fitting algorithm. Finally, 3D facial curvature is used to initialize the location of facial feature, which helps

select the parameters of initial state for the improved AAM.
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There is currently a great deal of interest in mod-
el-based approaches to the interpretation of human
faces. The attractions are two-fold: robust interpre-
tation is achieved by constraining solutions to be
valid instances of the model example; and the abili-
ty to “explain” the face in terms of a set of model
parameters provides a basis for face interpretation.
In order to realize these benefits, the model of ob-
ject appearance should be as complete as possible.
Although model-based methods have proven quite
successful, there are few existing methods that use a
full, photo-realistic model and attempt to match it
directly by minimizing the difference between the
model-synthesized face and the image under inter-
pretation. They typically involve a very large num-
ber of parameters (50 — 100) in order to represent
the human face. Subsequently, active appearance
model (AAM) was proposed by Cootes et al.'!,
which is an efficient iterative matching process for
the location of facial feature points.

Actually, fitting an AAM to a face is a non-linear
optimization problem. A usual approach is to itera-
tively update the parameters (the shape and appear-
ance coefficients)'"™ . Given the current estimates
of the shape parameters, it is possible to warp the
input image backwards onto the model coordinate
frame and then compute an error image between the
current model instance and the image that the AAM
is being fit to. In most previous algorithms, it is
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simply assumed that there is a constant linear rela-
tionship between this error image and the additive
incremental updates to the parameters. Unfortu-
nately, the assumption that there is such a simple
relationship between the error image and the appro-
priate update to the model parameters is generally
incorrect. The result is that existing AAM fitting al-
gorithms perform poorly, both in terms of the num-
ber of iterations required to converge, and in terms
of the accuracy of the final fit.

In this paper we propose an efficient AAM fitting
algorithm named inverse compositional image align-
ment (ICIA), which is based on Lucas-Kanade im-
age alignment™ . The ICIA method does not consid-
er updates of the shape parameters. Instead, it up-
dates the entire warp by composing the current warp
with the computed incremental warp. With the
ICIA algorithm, we can project out the appearance
variation thereby eliminating a great deal of compu-
tation.

Besides, the standard AAM combined with princi-
pal component analysis (PCA), which is the basis of
ICIA fitting algorithm, is also presented. Finally,
the initial pose parameter is given out by key points
of the facial feature using curvature of 3D facial sur-
face. Because the initial pose parameter is an impor-
tant factor which affects the accuracy of AAMs.
The paper uses the curvature of 3D facial surface to
complete preliminary location of the facial features,
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and takes the location result as the initial pose pa-
rameter of the improved AAMs matching.

1 AAMs

AAM is a statistics based template matching
method, where the variability of shape and texture
is captured from a representative training set. PCA
on shape and texture data allows building a parame-
terized face model that fully describes with the pho-
to-realistic trained faces as well as the unseen. Fur-
ther details can be seen in Ref.[2].

1.1 Shape model

The shape is defined as the quality of a configura-
tion of points which is invariant under Euclidian
similarity transformations* . The representation
used for a single n-point shape is a 2n vector given
by

T
s = (xl ,yl ,Xz’)’z,"',xn—l ’ynfl ’Xn ’yn)

with n shape annotations, follows a statistical anal-
ysis where the shapes are previously aligned to a
common mean shape using a generalized procrustes
analysis (GPA) removing location, scale and rota-
tion effects. After PCA, we can model the statisti-
cal variation with

s =8, + Db, (1)

where s, is the mean shape, @, is a weighted linear
combination of eigenvectors of the covariance ma-
trix, b, is a vector of shape parameters which repre-

sents the weights. We can change the form of
Eq. (1) as

s = s+ 2. pisi, (2)
i=1

where the coefficients p; are the shape parameters.
Since we can easily perform a linear reparameter-
ization, wherever necessary, we assume that the
vectors s; are orthonormal.
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Fig.1 Linear shape model of an independent AAM

An example of independent AAM shape model is
shown in Fig. 1. On the left of the figure, we plot
the triangulated base mesh s,. In the remainder of
the figure, the base mesh s, is overlaid with arrows
corresponding to each of the first four shape vectors

S1, Sy, szand s,.
1.2 Texture model

For pixels sampled, the texture is represented by
the vector. Building a statistical texture model
requires warping each training image so that the
control points match those of the mean shape. As a
result, we partition the convex hull of the mean
shape by a set of triangles using the Delaunay trian-
gulation. Each pixel inside a triangle is mapped into
the correspondent triangle in the mean shape, as
shown in Fig.2.

(b) Warped texture

(a) Original

Fig.2 Texture mapping example

A texture model can be obtained by means of a
PCA on the normalized textures

g = gO + ngg’ (3)

where g is the synthesized texture, g, is the man
texture, @, contains highest covariance texture eig-
envectors and b, is a vector of texture parameters.
We can change the form of Eq. (3) as

AGO = A0+ DA, @)

where the coefficients A; are the appearance param-

eters. Since we can easily perform a linear reparam-
eterization, wherever necessary, we assume that the
images A; are orthonormal.

1.3 Combined model

The shape and texture from any training example
is described by the parameters b, and b,. To remove
correlations between shape and texture model pa-
rameters, a third PCA is performed to the following
data

b (wsbs)_ {W@Z(sso (5)

b @z,(g*go)

8

where W, is a diagonal matrix of weights for shape
and texture parameters with the ratio

D2,/ D02, , where 4, and A, are shape and texture

r =

efgenvafues, respectively. Using PCA again, @,
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holds the t. highest eigenvectors, and we obtain the
combined model, b = ®@.c. Thus, we can express
the shape and texture using the combined model by

s = S() + @sW:‘l@c.sc’ (6)
g=g t PP, (7)

Q('\’ .
where @, = ( (pA ) and c is a vector of appearance
g

controlling both shape and texture.
1.4 Model instantiation

Egs. (2) and (4) describe the AAM shape and ap-
pearance variation. Given the AAM shape parame-
ters

p = (pl sP2s P35 P )T’

we can use Eq. (2) to generate the shape of the
AAMs. Similarly, given the AAM appearance pa-
rameters

A= (A2, 4)0,

we can generate the AAM appearance A (x) de-
fined in the interior of the base mesh s,. The AAM
model instance with shape parameters p and appear-
ance parameters A is then created by warping the
appearance A from the base mesh s, to the model
shape s. This process is illustrated in Fig.3 for con-
crete values of p and 4.

A AAALL,

Apperance, 4 A4, + 8354, — 3654, — 684, + 1164,

AAM model instance
MW(x; p)

+ 93s, — 29s; — 1lds,

+ 36s1

Fig.3 An example of AAM instantiation

In particular, the pair of meshes s, and s define a
piecewise affine warp from s, to s. We denote this
piecewise affine warp W (x; p). The final AAM
model instance is then computed by forwards warp-
ing the appearance A from s, to s with W(x;p).
This process is defined by

M(W(x;p)) = A(x). (8)

2 Alignment based on AAMs
2.1 Goal of fitting

Suppose we are given an input image I(x) that we

wish to fit an AAM to. And the model instance is
M(W(x;p). To define the fitting process, we must
formally define the criterion to be optimized in the
fitting process. Naturally, we want to minimize the
error between I (x) and M(W(x;p))=A(x).
Suppose x is a pixel in s,. The corresponding pixel
in the input image I is W(x;p). At the pixel x the
AAM has the appearance

Alz) = Ay(2) + i}/\,Ai(x).

At the pixel W(x;p), the input image has the in-
tensity 7( W(x;p). We minimize the sum of squares
of the difference between these two quantities

m

DA (x) + ZAA (x) = I(W(x;p))]*. (9)

JGS

The goal of AAM fitting is then to minimize the
expression in Eq. (9) simultaneously with respect to
the shape parameters p and the appearance parame-
ters A. We denote the error image as

m

E(x) = Ay(2) + ZAA (x) -
I(W(x; p) (10)

Various researchers have put emphasis on mini-
mizing the expression in Eq. (9) by means of descent
optimization algorithm™®'. However, the disadvan-
tage of these gradient descent! algorithms is that
they are very slow. The partial derivatives, Hes-
sian, and gradient direction all need to be recomput-
ed in each iteration'” .

Therefore, an efficient way to update the param-
eters is proposed. Instead of the previous algorithm,
which solves for and the updates the parameters p<—
p+ ¥V p, we consider the entire warp by composing
the current warp with the computed incremental
warp with parameters V p. In particular, it is possi-
ble to update

W(x;p) < W(x;p) e W(x;Vp). (11)

This compositional approach is different, yet
provably equivalent, to the wusual additive
approach™. Ref. [8] presents the Lucas-Kanade
image fitting algorithm and forward compositional
image alignment algorithm specifically, they are the
basis of ICIA.

2.2 ICIA

The ICIA algorithm is a modification of the for-
wards compositional algorithm where the roles of
the template and example image are reversed ™
Rather than computing the incremental warp w1th
respect to I{ W(x;p)), it is computed with respect
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to the template A,(x).

The compositional framework computes an incre-
mental warp W (x; Vp) to be composed with the
current warp W(x;p). The minimization is over

SUI(W(xsp)) — A(W(x;Vp) ] (12)

x

with respect to V p and then updating the warp us-
ing

W(x;p) < W(x;p) e W(x;Vp) ' (13)
Taking the Taylor series expansion of Eq. (12)
gives
DLW (x;p) — Ag(W(x30)) -

I W
Jp

VA, VP)JZ- (14)

Assuming again that W (x; 0) is the identity
warp, the solution to this least squares problem is

Vp = H*‘ZWAO%Y}“U(W()C;M) -
A ], (15)

where H is Hessian matrix with I replaced by

I W

I W,
Jp

Jdp

H = Z[VAU }T[VAO (16>

Since the template A is constant and the Jacobian
J .
(97 is always evaluated at p =0, most of the com-

putation in Egs. (15) and (16) can be moved to a
precomputation step. The result is a very efficient
image alignment algorithm. The steps for ICIA can
be shown as

Pre-compute:

Step 3 Evaluating the gradient V A, of the tem-
plate A, (x);

. . d
Step 4 Evaluating the Jacobian % at (x;0);

Step 5 Computing the steepest descent images
IW
VA, ap
Step 6 Compute the Hessian matrix using
Eq. (15).

Iterate until converged:

Step 1  Warpping I with W (x; p) to compute
I(W(x;p);

Step 2 Computing the error image I(W(x;p))
— A ()3
IW
Ip

Step7 Computing > [V A, I"[I(W(x;p))

— A (l" ) ] 5
Step 8 Computing V p using Eq. (15);
Step 9 Updating the warp

W(x;p) < W(x;p) - W(x;Vp)".

2.3 Comparison between additive and compo-
sitional updates

The main advantage of the inverse compositional
. . . d
algorithm is that the Hessian and V A, %/ are both

constant and so can be precomputed. Since this is
most of the computation, the resulting algorithm is
very efficient.

Fig.4 shows the results of comparing the additive
and compositional updates to the warp in Step 9.

— Compositional
- - Additive

RMS point location error

S = N W A 0 AN N 0 O

Iteration

(a) Rate of convergence perturbing shape
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(b) Frequency of convergence perturbing shape

Fig.4 Results of comparing the additive and compositional
updates

3 Location initialization based on cur-
vature

Curvature on 3D surface is the most basic charac-
teristic, which is very useful for 3D-model-based
method. Moreno A B” computed the curvature of
the surface and the mean curvature and divided the
face into several kinds of surfaces.

In this paper, we locate the face by means of
searching the local maximum of curvature (Fig. 5).
It is easy to locate the face via the 4 points-tip of
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nose, inner corner of the eyes, the middle point of
the eyes.

@ (b) (c)

Fig. 5
points

Locate the face by means of curvature at special

Depending on this locating method, AAM can
give a better performance compared with the origi-
nal AAM.

4 Conclusion

In this paper, we mainly propose a more efficient
fitting algorithm named ICIA compared with the
previous fitting approaches based on AAM. Since
the AAM model is the basis of the fitting algorithm,
the shape model, appearance model and the com-
bined model are also introduced briefly. Finally, we
propose a method for locating the face as initializa-
tion, which increases the accuracy and speed of fit-
ting process. Fitting process based on AAM is the
unique step for the subsequent jobs such as face de-
tection, facial expression recognition and so on.
This fitting algorithm affords a robust method for
facial feature location, which is faster and accurate.
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