Vol.2 Supplement

Journal of Measurement Science and Instrumentation 2011

Large Scale Text Classification with Multi-label Naive Bayes

Antti PUURULA

(Dept . of Computer Science , University of Waikato, Hamilton, New Zealand)

Abstract- Large scale multi-label text classification tasks are
becoming common with online databases, such as Wikipedia
and the DMOZ web directory. Current machine learning classi-
fiers lack the scaling capabilities required to manage these da-
tabases. An efficient multi-label mixture model is proposed in
this paper called Multi-label Naive Bayes (MLNB). The MLNB
can be extremely efficiently trained with closed form and linear
time estimation. An approximate inference algorithm called Ex-
tended Greedy Iterative Addition (EGIA) is proposed for sparse
generative classifiers, using pruning techniques and exploiting
data sparsity to reduce uhe practical time complexity of classi-
fication. The model and the inference algorithm are evaluated
on the LSHTC2 datasets for large scale multi-label text classifi-
cation, resulting in accuracy comparable to K-Nearest Neigh-
bour, with sub-second classification times for multi-label clas-
sification of over 325000 labels and 1.6 million features.

Key words-multi-label ; text classification; mixture model ;
Wikipedia ; naive Bayes ; DMOZ ; LSHTC2; ML-
NB; EGIA

Manuscript Number: 1674-8042(2011)suppl.-0038-08
doi: 10.3969/j.issn. 1674-8042.2011. suppl . 009

1 Introduction

The arrival of large scale online databases is
providing new opportunities and challenges for ma-
chine learning. Databases such as Wikipedia,
DMOZ, IMDB and Worldcat among others contain
vast amounts of structured data for new types of ma-
chine learning applications. For Wikipedia alone
the INEX2010 evaluation''’ had 9 categories of
tasks, ranging from classification and clustering to
finding relevant text snippets.

Both the scalability of classifiers and use of
structured data are challenges for machine learning
classification. In these tasks classifiers must effi-
ciently scale to potentially millions of documents,
terms and labels. With large scale data linear time
scaling concerning each of these dimensions becomes

* Received: 2011-07-06
Corresponding author: Antti PUURULA

a necessity.

Structured data poses the second major chal-
lenge. Most classification algorithms have been de-
signed for the case of a vector input and a single
variable output. With newer applications of ma-
chine learning a variety of variable types are en-
countered. Multi-label classification refers to the
case where the output variable is a set of labels, or
equivalently a binary vector of label occurrences.

Early research treated multi-label classification
as a sequence of independent binary classification
problems”’. However, this Binary Relevance meth-
od ignores label correlations and results in low per-
formance. Current high-performance solutions for
multi-label text classification include Multi-label De-
cision Trees"*’ and Ensembles of Classifier Chains ™.
Neither has linear time complexities for both train-
ing and classification required for scaling.

There seems to be a demand for models that can
deal with both structured data and scaling. One
promising approach is the use of finite mixture
models>”’. These are generative models general-
izing the well known Naive Bayes model®”’, by us-
ing mixtures of components for label-conditional
distributions of words. Mixture models also show
potential for many other structured uses, one nota-
ble example being modelling of multi-field input in
current ranking models " .

In this paper a simple mixture model called
Multi-label Naive Bayes (MLNB) is presented with
linear time and closed form estimation. The estima-
tion is done in a streaming framework with online
model pruning. The algorithms for multi-label mix-
ture models are improved by turning data sparsity
into an advantage. Models parameters are stored in
sparse hash tables, with linear interpolation to
smoothing models. For classification using multi-la-
bel mixture models a new algorithm called Extended
Greedy Iterative Addition (EGIA) is proposed.
This reduces the time complexity of classification to

Vol.2

Antti PUURULA 39

practically linear by exploiting data sparsity and us-
ing several pruning criteria.

Evaluation of the MLNB model is conducted on
the Large Scale Hierarchical Text Classification
Challenge 2 (LSHTC2 Y evaluation datasets.
These consist of 3 multi-label and partly non-hierar-
chical classification tasks using subsets of the DM-
07" web directory and English Wikipedia "',
with up to some hundreds of thousands of labels.
While the full databases for these have cyclic cate-
gory structures and contain from over half a million
(English Wikipedia) to over a million (DMOZ) la-
bels, the evaluation sets approach the complexity of
real-world uses.

Section 2 of the paper provides an overview of
the mixture model approach to multi-label text clas-
sification. Section 3 presents the MLNB model and
the efficient EGIA classification algorithm. Section
4 describes experiments and current evaluation re-
sults on the LSHTC2 datasets. Section 5 completes
the paper with a discussion on the model and further
extensions of the mixture model approach for text
classification tasks.

2 Multi-label mixture models for text
classification

2.1 Naive Bayes text classification

Text classification in machine learning refers to
the task of assigning a class to a text. One ubiq-
uitous use of text classification is spam filtering,
where an e-mail is given a binary label I, spam/not-
spam. It is standard to represent the input text as a
vector of word counts W=[w,, -*-, w,], known as
the bag-of-words representation. More complex cas-
es involve structured texts and classes, such as multi-
field inputs and multi-label outputs. Classification is
viewed in general as a supervised problem, where
classifier functions are trained from training data
with known classes assigned for each input text.
This can be contrasted with clustering of similar
texts, which is mostly an unsupervised task.

Probabilistic approaches to classification use a
statistical model to provide the classifier function.
Most commonly the model structure is fixed and
training consists of estimation of parameters. Gen-
erative classification models such as the Naive Bay-
es™®*! attempt to model the joint distribution p (W,
) of word count vectors W and categorical label
variables /. Classification for a given input word
vector is then done by choosing the label that maxi-
mizes this joint distribution. In the following Naive
Bayes and its mixture model generalizations are de-
tailed.

The Multinomial Naive Bayes models the joint
distribution as

p(W, 1) =p(D)p (W) p(D) [p(n), (1)

where p (1) is the prior probability of label 1 and
p (W) is the label conditional multinomial proba-
bility of word vector W given label [. In this paper
the word index n is considered to be a sparse repre-
sentation, spanning only the non-zero word counts.

The Multinomial Naive Bayes takes parameters
for the label priors p (/) and label conditional
multinomials p, (W). Estimating Maximum Likeli-
hood (ML) parameters from a training dataset of
known W and 1 is trivial and highly efficient. For
the label priors this involves counting the occurrence
of each label and dividing the counts by the total
sum of label counts. For each multinomial the prob-
abilities are likewise estimated by summing and nor-
malizing.

2.2 Mixture models of text

Finite mixture models are a modelling approach
with over a century of use in statistics, capable of
modelling any distribution, given sufficient data for
parameter estimates. Mixture models have recently
found use in text classification as a means for gener-
alizing the label-conditional distributions used in
Naive Bayes, resulting in much richer generative
classification models. Simple assumptions have been
used to extend these models to multi-label classifica-
tion7" .

The earliest use of mixture modelling in text
classification was not in extending the multinomial,
but in smoothing low-count word estimates to pre-
vent overfitting. Due to the power law distribution
of words, most possible words occur once or not at
all for a given label, resulting in insufficient data
for parameter estimates. Interpolation of a multino-
mial with a smoothing distribution such as the uni-
form can be conveniently formalized as a mixture
model.

The most common words on the other hand oc-
cur very frequently. This results in underfitting, as
the multinomial only uses a single parameter per
word, even when ample data is available. Use of
mixtures enables more detailed modelling of the la-
bel-conditional word distributions, resulting in ex-
ten[si]ons of Naive Bayes with mixtures of multinomi-
als''* as

2 (W) o Dk, [pim (n)", (2)

where the introduced K; is a component weight vec-
tor summing to 1.

40 Journal of Measurement Science and Instrumentation

Supplement 2011

A mixture model of this type can be called a
document -clustering mixture , as each mixture com-
ponent klm now becomes a prototype document.
Another common type [15] of mixture model for
text takes the form:

s W) o [] [D kppin (n) ™ (3)

Here the mixture is over words, and model of
this type can be called a word-clustering mixture. In
practice these models work very differently. A vari-
ety of more complex mixture models have been de-
signed for document representation over the past de-
cade. Latent Dirichlet Allocation''®’ , for example,
can be understood as a word clustering mixture using
a Dirichlet distribution to generate k,, for each doc-
ument.

Addition of either type of mixture complicates
estimation of the models. Unlike the labels, the in-
troduced components k,, are hidden variables for
the purpose of estimation, making exact ML-estima-
tion intractable. Expectation = Maximization
(EM)"" is an iterative local search algorithm that is
conventionally used to estimate mixture models. EM
operates by alternating between an Expectation step
and a Maximization step until a local maximum of
the likelihood function is reached. With mixture
models these steps correspond to computing the con-
ditional probabilities of the mixture components giv-
en the data p(K|W, [) (E-step), followed by ML-
estimation of parameters by assuming that the ex-
pected probabilities are the true component weights
(M-step). If the likelihood function is unimodal or
the initial parameters are suitably chosen, EM gives
the exact ML estimate. Most commonly likelihood
functions are multimodal, and additional strategies
such as multiple restarts are often used to get ap-
proximate ML estimates with EM.

2.3 Multi-label mixture models of text

A number of publications followingm have pro-
posed the use of mixture models for multi-label text
classification'®”. These multi-label mixture models
share a number of choices in their modelling as-
sumptions and the used algorithms. One model that
has seen further development is the Parametric Mix-
ture Model (PMM)"*’

L, "
p(W,L)OC]_[{; 2lpm(n)} , (@)

j
where L=1[1,,--, [,] is a binary label representa-
tion of the label set, with each [,, a binary variable
instead of the categorical 1 as in the single-label

case.

The PMM, as most multi-label mixture models,
extend the multinomial Naive Bayes to the multi-la-
bel case by decomposing the multinomials condition-
al on the label sets p, (n) into additive components
pm (n) conditional on the individual labels Im. In
contrasu to most models PMM makes two strong as-
sumptions; that the label set priors p (L) are uni-
form, so that they can be omitted from (4), and
that the label components are uniform, so that k,, =

i,/ 2 ;. As an example of the second assumption,

in a document with five labels each label would gen-
erate one fifth of the words, ,/>) {, = 1/5.

Dirichlet priors corresponding to addirjlg one to each
word count are used for smoothing p,, (n). Due to
the uniform component weights PMM likelihood is
convex, and an EM-like iterative algorithm was pro-
vided for exact Maximum A Posteriori estimation of
the parameters.

Training for the PMM is relatively efficient,
since the labels are known in training. Classification
on the other hand becomes an NP-complete prob-
lem, as the labels are unknown and | L |* label com-
binations exist. Approximate inference is used with
multi-label mixture models to overcome this. The
most important approximation is here called Greedy
Iterative Addition (GIA). With GIA labels are iter-
atively added by choosing the label maximizing the
label set probability, until the label set probability
does not increase. This approximation turns a | L |”
time complexity probmem into a practically | L |
complexity problem, enabling very efficient linear
time classification. Details and an extension of this
approximation are given in the next section.

3 Multi-label naive Bayes

3.1 Model definition

The PMM is the most computationally efficient
multi-label mixture model and has lead to a number
of more complex models. However, for large data-
bases the EM-like iterative algorithm is undesirable,
as what is needed is models that can be efficiently
trained from a single pass over the training data. In
addition the lack of label set priors p (L) in the
PMM unnecessarily degrades classification perfor-
mance.

In this paper a model taking these factors into
account is presented, called Multi-label Naive Bayes
(MLNB) :

p(W,L)cc p(L)]] {; Zl_pm<n>} . (5)

n

j

Vol.2

Antti PUURULA 41

The label set prior can take many forms, but
factorization of the binary vector p (L) is not
straightforward. One option, used in Ref.[5], is to
have a categorical distribution over the label sets.
For smoothing purposes both the priors and the
multinomials can be implemented as interpolation
mixtures.

The interpolation-smoothed label set priors take
the form:

P(L) = a,p*(L) +a,p’(L) + a;U, (6)

u

where a are the interpolation mixture weights, p
(L) the unsmoothed label set categorical, U the
uniform distribution and p* (L) a categorical over
the label sets with parameters tied between label sets
of the same number of labels. Thus p’(L) works as
a histogram model of different label set sizes.

The multinomials are similarly smoothed using
an interpolation mixture:

P () = aypi, (n) +asp,(n) +aU, (7)

where p;, (n) is again a smoothing distribution, this
time an average of the multinomial probabilities,
working as a background distribution.

Use of two smoothing distributions is similar to
use of two-stage smoothing in information
retrieval ™. Smoothing with a uniform comple-
ments the very rare cases where even the smoothing
model p’ is not accurately modelled. Estimation of
the model can be done almost as efficiently as Naive
Bayes, since the probability mass from each training
document is split evenly between the labels. This

complicates estimation time only by E(Zl), the

average number of labels per document.

The use of interpolation smoothing also enables
sparse modelling, a crucial requirement for large
scale classifiers. Both p“ and p’ can be represented
as hash tables of occurring entries, omitting the vast
majority of entries that have values of 0. Informa-
tion related to a specific multinomial does not need
to be stored, and in an extreme case only a single
count per multinomial needs to be added to the hash
table.

The MLNB can be efficiently trained from a
data stream using a single pass. The hash table repr-
esentation means that the numbers of words, labels
or training documents do not need to be known apri-
ori, but new entry types can be added on-the-fly to
the hash tables as they are encountered in streamed
training data. To fit the models in finite memory,
the multinomial hash table can be pruned on-line by
periodically removing counts under a pruning
threshold and removing the lowest counts to a maxi-
mum number of counts. A small discount multiplier
is applied to the counts after each pruning to keep

the hash table from saturating with high count en-
tries and not accepting new entries.

3.2 Efficient inference

Multi-label mixture models use different ap-
proximations to reduce the | L |*-time complexity in-
herent in multi-label classification to closer to |L|.
Greedy iterative addition performs | L| in practice,
but there are a couple of problems with it. Firstly
the greedy search means that if a label is added to
the label set, the error is irrecoverable. Second,
with large scale classification even | L | is not
enough, due to large evaluation sets where label sets
of size | L | >300 000 are encountered. Therefore
more refined approximate inference strategies are
required.

GIA can be improved both in terms of efficien-
cy and coverage of the search space. The use of a
smoothing histogram distribution p* (L) for the la-
bel sets indirectly improves the GIA, as the algo-
rithm is biased against wandering to very large label
sets in classification. This results in closer to linear
time complexity concerning the label set size | L |.
A couple of more substantial improvements are pre-
sented in the following, resulting in the algorithm
called Extended Greedy Iterative Addition(EGIA).

The first and foremost improvement is to con-
struct after training a reverse hash table , containing
for each word the list of labels r (w) that have
probability assigned to that word. The reverse hash
table can then be used to reduce the time complexity
of classification, which would be otherwise be lin-
early dependent on the number of possible labels
|L|. For each classification an evaluation list of
possible labels can be constructed, by consulting the
reverse hash table for the lists of labels that can gen-
erate the input words. For multinomial models the
time complexity of classification reduces from non-

sparse E(D>) | L |) tosparse E(>) | 7(w) |). The

complexity of E(>) | r(w) |) also becomes the

practical time complexity of classification with
EGIA, since in practice EGIA iterates only a small
number of iterations that is independent of | L| and
lr(w)l.

The evaluation list can be further ordered by
the number of multinomial counts matching each la-
bel, weighted by the corresponding TFIDF-weight-
ed word counts. This gives an approximate ordered
list of the most likely labels to have generated the
word vector. An iteration pruning threshold can
then be used to terminate an iteration of EGIA, if it
is unlikely that remaining labels in the evaluation
list provide a better candidate for addition. A mean
log likelihood is maintained for each iteration, and

42 Journal of Measurement Science and Instrumentation

Supplement 2011

if the mean falls lower than the threshold from the
current maximum log likelihood, the iteration is ter-
minated.

Rejection of labels from consideration by
threshold has been another popular strategy with
multi-label mixture models. This can be integrated
into EGIA by permanently rejecting from the evalu-
ation list labels not improving the probability. This
is used in the EGIA, as it does not seem to consider-
ably reduce the accuracy of classification. Alterna-
tively a label rejection threshold could be raised by a
preset value, to only reject labels degrading the re-
sult considerably.

In order to provide GIA some ability to recover
from errors, an additional removal step can be used
before the addition step. For each label in the cur-
rent label set removing the label is attempted, and
the label is removed and rejected from the evalu-
ation list if this improves the label set probability.
Since the probability is still required to increase,
this step doesn’t cause backtracking. In theory, the
removal step could complicate the worst case time
complexity due to recurring addition and removal of
labels, but with real data this does not occur. The
added processing from the removal step is in prac-
tice minimal, and can even improve classification
times due to interaction with pruning.

Tab.1 Extended greedy iterative addition

1 label _set={}; ordered _list=1};

2 for each word w, :

3 for each label [, in reverse hash _table[w]:

4 add _ count(ordered _list, [,,)

5 while ordered _list! ={}:

6 prob _cache= cache _ probs(label _set)

7 for each label [, in label _set:

3 try _ label _ removal (label _ set, [, , prob _
cache)

9 if (remove(label _set, max _label)) continue

10 for each label [,, in ordered _ list:

1 try _ label _ addition (label _ set, [,,, prob _
cache)

12 if (label _ prob<max _ prob)

13 remove(ordered _ list, [,,)

14 if (mean _prob<<max _probiter _ threshold)

15 break

16 if(max _ prob oldry _ prob) break

17 add(label _set, max _label)

18 remove(ordered _ list, max _label)

19 return label _set

One more practical improvement possibly used
by earlier authors using GIA is caching to keep the
current label set probabilities for each word. This

provides an exact time complexity reduction, since
for each candidate label Im only a weighted sum for
each word is required, instead of repeating the full
computation of the joint probability p (W, L) for
the proposed L.

Tab .1 shows a coarse pseudocode description of
the EGIA algorithm. Lines 2—~4 construct the orde-
red evaluation list. Lines 5~18 contain the main it-
eration loop. Line 6 caches the per-word mixture
probabilities from the current label set, 7—9 try re-
moval of labels and 10~ 18 addition of labels. The
proposed algorithm can be used with most of the
multi-label mixture models that have been devel-
oped. The next section will show test results from
the LSHTC evaluation datasets using the MLNB
model with the EGIA algorithm for classification.

4 Experiments

4.1 Experiment datasets

In recent years multi-label text classification
evaluations have started to scale up to the challenges
encountered in online databases. The ongoing LSH-
TC2 evaluation uses the largest current datasets in
terms of label set sizes. The datasets have been ex-
tracted from the English Wikipedia and DMOZ da-
tabases, and scale up to hundreds of thousands of la-
bels and millions of words and training documents.
The current full databases contain over a million la-
bels for DMOZ and over half a million for English
Wikipedia. In addition the databases contain cyclic
category structures, which have been simplified to
acyclic hierarchies for LSHTC2. The evaluation
tasks nevertheless come very close to the actual real
world task complexities.

Tab. 2 shows the official statistics from the
LSHTC2 datasets. The documents are provided in a
sparse form with integer codes for labels and words,
with the actual label and word identities undisclosed
to the participants. The integer-coded word counts
come from word stemming used by the LSHTC2 or-
ganizers. Label hierarchy descriptions are also pro-
vided, but with the MLNB the label hierarchies are
not utilized.

Tab.2 LSHTC?2 training dataset statistics

#labels # words # train ECIL])

docs
DMOZ 27 875 594 158 394 758 1.023
W. Small 36 504 346 299 456 886 1.859
W. Large 325058 1617899 2 365 436 3.261

4.2 Experimental setup

The multinomial model of text is known to have
several incorrect assumptions undermining its per-

Vol.2

Antti PUURULA 43

formance. With Naive Bayes models a couple of
common feature pre-processing methods are used to
overcome these flaws. The word counts were pro-
cessed using length normalization followed by the
common Term Frequency-Inverse Document Fre-
quency (TF-IDF) weighting’’ :

u

hoyq]l 1D
ZU«':{ :|10g d) (8)

w, = log
where w" are the unprocessed word counts, | D| the
number of training documents and d, the number of
training documents containing wn. Since stream
training was used, | D | is not known beforehand.
Therefore an adaptive Online TF-IDF version was
used, so that | D | was updated during the training
with prior additive smoothing for the d,. This al-
lows the use of Online TF-IDF word weights in
pruning the multinomial hash table during training.

A number of parameters had to be optimized on
held-out test sets, namely the interpolation weights
in the smoothing mixtures and the different pruning
criteria used in training and classification. The
training data sets for each 3 LSHTC2 tasks were
split into dry-run development partitions dry train,
dry dev and dry eval, with 1 000 documents for de-
velopment set, 2 000 for the evaluation set and the
rest for the training set.

Having a small development set enabled faster
calibration of the parameters. A simple Random
Optimization“g] search was run to set the meta-pa-
rameters, using the dry-train and dry-dev parti-
tions. This is an iterative hill-climbing search, sam-
pling normally-distributed points around the current
maximum. The training was done on a computing
cluster using batches, with variance of the sampling
decreasing in linear step sizes. For training the opti-
mized meta-parameters were for frequency of hash
table pruning, count-based pruning threshold, max-
imum hash table size and additive smoothing for TF-
IDF. For evaluation the meta-parameters were the
interpolation smoothing weights and the iterative
pruning threshold for EGIA. The final training
times were very low for all datasets, the optimized
Large Wikipedia model training took 34 minutes us-
ing Java on a single cluster machine with 4 GB of
memory. For Small Wikipedia training took only 9
minutes and for DMOZ 6 minutes. A maximum of 8
million multinomial counts were stored in the hash
tables, along 1.4 million label set counts for the
Large Wikipedia task. Fig. 1 and Fig. 2 show the
multinomial hash table and the reverse hash table
for the Large Wikipedia task models. In both cases
a power-law distribution is seen, as the most com-
mon words and labels are modelled with more counts
by the sparse multinomials.

Multinomial hash table

100000
?é 10000
Q
+ 1000
2 A
g 100
g \
O 10

0 20000 40000 60000 80000 100000120000 140000
Label In
Fig.1 Sorted multinomial hash table counts for the

Large Wikipedia model. Counts were stored for 153 794
different labels, with a maximum of 31 309 words per
label

Reverse hash table

100000
10000
1000
100

10

Counts stored

R

1 ‘
0 100000

200000 300000 400000
Word wa

Fig.2 Sorted reverse hash table counts for the Large
Wikipedia model. Counts were stored for 431 821 differ-
ent words, with a maximum of 27 036 labels per word

4.3 Results

Classification was performed on the dry _ dev,
dry _eval and the official evaluation test sets. For
brevity only the label-based micro F-score (LBMiF)
is reported. Among the many metrics for evaluation
of multi-label text classification the LBMIiF is the
most commonly used. Tab.3 shows the F-score re-
sults from the test sets in and the baseline K-Nearest
Neighbours (KNN) results from LSHTC2 organi-
zers. On the DMOZ data MLNB clearly outper-
forms the KNN baseline, 0.23 vs. 0. 10. On the
Wikipedia evaluation KNN gives much better re-
sults, 0.19 vs. 0.29 for Small and 0.16 vs. 0.30 for
Large. The high variance in the results likely comes
from either or both models not being accurately fit-
ted to the tasks. For reference, at the time of writ-
ing the LSHTC2 evaluation is ongoing with daily up-
dated results, but already some of the proposed clas-
sifiers are outperforming the KNN baseline across
the tasks with F-score results ranging roughly from
0.28 to 0.38.

It can be concluded that the MLNB provides
comparable baseline results to the KNN in these
tasks, but without the very high computational cost
of KNN of comparing test documents to every train-
ing document. The MLNB models used only roughly
0.4 seconds per classified document, or 11.0 min-
utes for DMOZ, 10.9 for Small Wikipedia and 14.0

44 Journal of Measurement Science and Instrumentation

Supplement 2011

for Large Wikipedia dry _ eval partitions of 2 000
documents. The KNN time complexity is linear to
the number of training documents, and with larger
databases this is bound to become inefficient.

Tab.3 LSHTC2 results in label-based micro F-score

dry _dev dry_eval eval eval

MLNB MLNB MLNB KNN
DMOZ 0.2537 0.2372 0.2319 0.1074
W. Small 0.2112 0.2133 0.1953 0.2978
W. Large 0.1800 0.1862 0.1611 0.3015

5 Discussions

This paper presented a simple multi-label exten-
sion of the popular Multinomial Naive-Bayes model,
evaluated in the ongoing LSHTC2 evaluation of
large scale multi-label text classification. The Multi-
label Naive Bayes (MLNB) mixture model has very
efficient closed form estimation, resulting in train-
ing times of minutes on large datasets using a single
computer. An efficient inference algorithm called
the Extended Greedy Iterative Addition (EGIA)
was proposed as a decoding strategy for MLNB and
related mixture models. This resulted in sub-second
classification times for multi-label classification with
hundreds of thousands of labels and over a million
features, with accuracies comparable to KNN base-
lines.

While the EGIA classification algorithm was
developed for fast inference using sparse multi-label
mixture models, it can be equally used in the single-
label case by constraining the search to a single iter-
ation. EGIA can therefore be used with sparse sin-
gle-label Naive Bayes or any sparse classifier gener-
alizing the Naive Bayes. Since large-scale classifica-
tion problems use almost exclusively sparse or
pruned models, EGIA can be used to scale genera-
tive models to very high dimensional classification
without the normally associated costs.

It is clear from the evaluation tasks that many
task-specific resources were not fully utilized, in-
cluding the label hierarchies. In terms of classifica-
tion accuracy it is obvious that more memory and
time-consuming classifiers will outperform MLNB.
The prime motivation of the research in this paper
has not been the proposal of MLNB as an off-the-
shelf solution for large multi-label text classifica-
tion, but rather the development of a generative
classification model for these tasks that can be used
as a starting point for more complex mixture model-
ling. In this respect the research has been highly
successful, as the MLNB provides baseline results
with extremely low time and memory requirements.

The simple meta-heuristics search Random Op-
timization likely found less than optimal values for
the Large Wikipedia, resulting in considerably high-
er training and classification times for that task. In
current work search based on Simultaneous Pertur-
bation Stochastic Approximation (SPSA)"™" is inves-
tigated. This should improve the MLNB in all ac-
counts, as gains in model size, time requirements
and accuracy are interrelated with the techniques
used in this paper. For example, the use of the re-
verse hash table in EGIA means that the smaller the
model gets pruned, the faster classification be-
comes. Efficient and reliable meta-optimization will
also enable the addition of many more features that
should improve the MLNB performance by a fair
margin. These could include more models for the in-
terpolation smoothing, log-linear weighting of the
prior and the multinomial, pruning labels from the
evaluation list by minimal TFIDF sum and more de-
tailed feature preprocessing such as the BM-25.

Future research on generative classifiers for
text classification can improve on the MLNB, while
using many of the techniques presented in this pa-
per. A number of increasingly complex mixture
models have recently been designed for text classifi-
cation”'. Many of these however lack the scaling to
large scale tasks that the MLNB possesses. A direc-
tion suited for generative modelling is addition of
different document and word-level mixtures, while
using a linear-time training algorithm such as Step-
wise EM?" for training the multi-layer mixture. In
this way the extremely efficient properties of the
MLNB could be coupled with the classification accu-
racy of the more complex generative classification
models.

References

[1] De Vries C M, Nayak R, Kutty S, et al. Overview of
the INEX 2010 XML mining track : clustering and clas-
sification of XML documents. Initiative for the Evalu-
ation of XML Retrieval (INEX) 2010, Amsterdam,
2011.

[2] Tsoumakas G., loannis K. Multi-label classification: an
overview. International Journal of Data Warehousing
and Mining , 2007, 3(3): 1-13.

[3] Vens C, Struyf J, Schietgat L, et al. Decision trees for
hierarchical multi-label classification. Machine Learn-
ing, 2008, 73: 185-214.

[4] Read J, Pfahringer B, Holmes G, et al. Classifier
chains for multi-label classification. Machine Learning
and Knowledge Discovery in Databases, Lecture Notes
in Computer Science, Springer Berlin | Heidelberg,
2009, 5782: 254-269.

[5] McCallum A K. Multi-label text classification with a
mixture model trained by EM. AAAI 99 Workshop on
Text Learning, 1999.

Vol.2 Antti PUURULA 45

[6] Ueda N, Saito K. Parametric mixture models for multi- [15] Li H, Yamanishi K. Document classification using a fi-
labeled text. Advances in Neural Information Processing nite mixture mode. Proceedings of ACL, Spain, 1997:
Systems, 2002, 15. 39-47

[7] Wang H, Huang M, Zhu X. A generative probabilistic [16] Blei D, Ng A, Jordan M I Latent dirichlet allocation.
model for multi-label classification. 8th IEEE Interna- J. Mach. Learn. Res., 2003, 3: 993-1022 .
tional Conference on Data Mining,2008: 628-637. [17] Neal R M, Hinton G E. A view of the EM algorithm

[8] Maron M E. Automatic indexing: an experimental in- that justifies incremental, sparse, and other variants.
quiry. Journal of the ACM, 1961, 8:404-417. Learning in graphical models, MIT Press, 1999: 355-

[9] Rennie J D, Shih L, Teevan J, et al. Tackling the poor 368.
assumptions of naive bayes text classifiers. Proceedings [18] Zhai C, Lafferty J. Two-stage language models forin-
of the Twentieth International Conference on Machine formation retrieval. SIGIR 2002: 49-56.

Learning, 2003:616-623. [19] Matyas J. Random optimization. Automation and Re-

[10] Wang K, Li X, GaoJ. Multi-style language model for mote Cntrol , 1965, 26: 246-253.

web scale information retrieval. Proceedings of SIGIR, [20] Spall J C. Multivariate stochastic approximation using a
SIGIR’10, 2010: 467-474. simultaneous perturbation gradient approximation.

[11] http://Ishtc. iit. demokritos. gr. IEEE Trans. on Automatic Control, 1992, 37: 332-

[12] http://www.dmoz. org. 341.

[13] http:/en. wikipedia. org. [21] Sato M, Ishii S. On-line EM Algorithm for the Nor-

[14] Nigam K, McCallum A K, Thrun S, et al. Text classi- malized Gaussian Network. Neural Comput., 2000,

fication from labeled and unlabeled documents using 12: 407-432.

em. Machine Learning, 2000, 39: 104-134.

