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Correction of sensor’s dynamic error
caused by system limitations

WU Jian(#  f#), ZHANG Zhi-jie(5KEA)

(Key Laboratory of Instrumentation Science & Dynamic Measurement , Ministry of Education
North University of China, Taiyuan 030051, China)

Abstract: The method based on particle swarm optimization (PSO) integrated with functional link articial neural network
(FLANN) for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by its system limi-
tations. Combining the advantages of PSO and FLANN, with this method a dynamic compensator can be realized without
knowing the dynamic model of the sensor. According to the input and output of the sensor and the reference model, the
weights of the network trained were used to initialize one particle station of the whole particle swarm when the training of
the FLANN had been finished. Then PSO algorithm was applied, and the global best particle station of the particle swarm
was the parameters of the compensator. The feasibility of dynamic compensation method is tested. Simulation results from
simulator of sensor show that the results after being compensated have given a good description to input signals.
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In test system, if the sensor’s working frequency
bandwidth is narrower than tested signal frequency
bandwidth, the spectral components outside work-
ing frequency bandwidth will be distorted and the
measured results can not describe the tested
signal'l’z]. At present, the compensation method is
using a dynamic compensator to process the output
signal®’. The method based on FLANN has been
used widely, but the FLANN has some problems in
different environment such as the local minimum
problem, the unwanted study problem and so on*'.
PSO has also been used widely, but its optimized re-
sults are easily affected by initial conditions”’.
Combining the advantages and disadvantages of two
optimization algorithms, the method based on PSO
integrated with FLANN is presented in this paper,
the feasibility and the fields of the applications are
also discussed.

1 Dynamic compensation of sensors
based on PSO integrated with
FLANN

The principle of dynamic compensation of sensors
is shown in Fig. 1.
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Fig.1 Principle of dynamic compensation of sensors

where x(¢) is the dynamic excitation signal, y (k)
represents sensor dynamic response signal, r (k) is
the expected sensor dynamic response result, z (k)
is sensor responses after compensation and e (k) is
the dynamic compensation error. The principle of
dynamic compensator, therefore, is that the correc-
tional result z (k) after compensation should ap-
proach the required ideal responses r(k) as close as
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possible and keep the loss function of the residual
error sequence e (k) minimum. According to Fig. 1,
z(k) can be expressed as

2(k) = (Ag+ Az "+ + Az ")y(k) -
(Biz "+ -+ B,z ")z(k) + g(k), (1)

where g (k) denotes a uniformly random noise, m
and n are the steps of compensator, A,, *, A, and
By, B, are the coefficients of the compensator.

The vector form of coefficients can be expressed
as

W = I:A7B:|I = I:AI9“"An ’B]’“.7Bm:|T' (2)

The mean square error (MSE) between z (k) and
r(k) is

J = %] X Ze(/@)z =
LS ) - =0y, 3)

where N denotes the sampling number.

1.1 Principle of dynamic compensation of
sensors based on FLANN

In Fig. 1, if we take FLANN as optimization al-
gorithm, the principle of dynamic compensation of
sensors based on FLANN is that the response of
compensator z(k) and real ones y(k) of the sensors
have been used as the inputs of FLANN. Then by
the function link, the inputs X (%) can be expanded
as

X(k) =[2(k),,2(k—m),
y(k), e y(k—n) ] (4)

The output z (k) will be generated by the neural
function through a weighted sum. The vector form
of z(k) can be expressed as

z(k) = W+ X(k) + b, (5)

where k=1,--, N, W is the vector form of coeffi-
cients, b is a threshold in which considering that
network learning is a continuous training and updat-
ing process. The weight parameters W and b in
Fig. 1 will vary with the training process, therefore,
we define

W(i)=[A®G), B(i)]' =

[A(i),,A,(i),B,(i),,B, ()],
and b(7), (6)

where w(7) and b(7) denote the current values of
W and b, when FLANN trains to the ith step.
Thus, the output expression of the network is

(k) = Wk —1) - X(k) +b(k—1). (7)

In every step, the expression of weight parameter
adjustment is

Wk +1) = Wk)+axX(k+1)xe(k),
(8)
b(k+1) =b(k)+axe(k+1), (9)

where « is a learning factor which can control the
stability and the rate of convergence.

After a series of training, when the mean square
error J is less than the setting value, the current
values of the network weight parameters are just the
ultimate results'®’ .

1.2 Principle of dynamic compensation of

sensors based on PSO

PSO algorithm is a global optimization method
based on SI (swarm intelligence). It searches D-di-
mensional search space for optimum solution
through a population of particles””’. The particle
has two attribute values: speed and position. Posi-
tion can be expressed by x; = (x;, x5, ", 2, ), and
velocity can be denoted with v, = (v, , v, ", vy ),
where x; represents a potential solution for the
problem. The best position of ith particle can be
expressed by pbest = ( p;\, pins**s pp). The global
best position of all the particles can be expressed by
gbest = (P, purs s Pup ). According to the above
individual best and global best, the ith particle ve-
locity with respect to the dth dimension is updated
by the following equation™®’

"de<” +1) = woy(n) + Clrld(n)(pid -
xu(n)) + cyray(n)(py — xu(n)), (10)

where w is called the inertia weight that controls
the impact of the current velocity on the next veloc-
ity and it is given by a constant; ¢, and c, are the
positive acceleration coefficients that pull each par-
ticle towards the individual best and global best po-
sitions; n represents iteration times; r,, and r,, are
uniformly random numbers chosen from the interval
[0,1]". After obtaining the velocity updating for-
mula, each particle moves its corresponding position
according to the following updating equation

zg(n+1) = a,(n) + v,(n +1). (11)

In Fig. 2, if we take PSO as optimization algo-
rithm, in order to obtain an optimal coefficients
W, the optimization variable W should be coded to
become particle of PSO algorithm’m. According to
characteristics of PSO algorithm, parameters can be
denoted with real number'"" . If the current position
of particle is denoted with W according to Eq. (2),
the velocity is denoted with v= (v, vy, ", v, ),

and fitness function which confirms the superiority-
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inferiority of particle’s current position'? is denot-
ed with F (W), the coding structure would be
adopted as follows.

Av, Aoy As, -, An B, Be, Bs, =, B | Vi, V2,3, 0, Veem | F(W)

Fig.2 Coding structure in PSO algorithm

Since the PSO algorithm only depends on the fit-
ness function to guide the search'™’, it must be de-
fined before the PSO algorithm is initialized. Mean
square error is chosen as the fitness function in this
study defined by

.
F(W) = ] = 3% S e(k)* =
k=0

LS Gt - =y (12)

1.3 Principle of dynamic compensation of
sensors based on PSO integrated with
FLANN

The search speed of optimization method based on
FLANN is high. However, it will fall into the local
minimum easily during network training. Although
PSO algorithm has high global search capability, its
optimized results are easily affected by initial condi-
tions. Combining the advantages and disadvantages
of two optimization algorithms, the method based
on PSO Integrated with FLANN is presented. With
this method, the initial conditions of PSO can be de-
termined by FLANN.

The steps of optimizing compensator’ s coeffi-
cients by PSO algorithm integrated with FLANN are
as follows:

Step 1: Set initial parameters of FLANN, includ-
ing inputs X (%), learning factor «, threshold b,
desired value of MSE and training times;

Step 2: Train the neural network till training
times or desired value of MSE is attained. Then save
last coefficients W

Step 3: Set initial parameters of PSO algorithm,
including population size, dimension, inertia
weight, acceleration coefficients, position space
and velocity space;

Step 4: Initialize every particle’s position and ve-
locity in parameter space through coefficients W in
steq 2;

Step 5: Calculate the fitness function F( W) using
Eq. (12);

Step 6: Initialize the current particle’s position as
the individual extreme pbest, and the position of
particle with minimum fitness among all individual
extreme as gbest ;

Step 7: Update the particle’s position and veloci-

ty according to Egs. (10) and (11);

Step 8: Calculate the fitness function F ( W)
again;

Step 9: Judge whether to update the particle’s in-
dividual extreme pbest and the global extreme gbest
of particle swarm;

Stepl0: Repeat step 5 to step 7, till meeting pre-
cision demand or reaching iteration times, output
gbest , to obtain the coefficients of compensator.

2  Feasibility analysis on dynamic
compensation of sensors based on
PSO integrated with FLANN

Various important types of sensors like acceler-
ometers or load cells can be modeled by Amass-spri-
ng system resulting in a second-order model "' of the
kind as
Sow(z)

H(s) = s° 4 20wy s + @)’

(13)

where s,, 0 and w, denote static gain, damping and
resonance frequency respectively.

In order to simulate dynamic performance of
those sensors, a second-order analog filter has been
designed and its circuit is shown in Fig.3. We can
simulate the characteristic of sensor through chang-
ing the parameters of resistance and capacitance.

—VCC
o0
R T Cip, 3 U6A
V-IN— — 1 T + 1 | V-OUT
C 2 |.
I TLC2272 1
GND =+
R; R < GND
GNDH

Fig.3 The circuit of analog filter

In order to validate feasibility of the compensati-
on method based on PSO integrated with FLANN, a
square wave whose frequency is 200 Hz has been
used as the analog filter’ s input. Then, the input
and response of analog filter has been measured by
test system. Using the input and response, we can
get the coefficients W of compensator through the
dynamic compensation algorithm. Take the W and
response into Eq. (1), then, we can get the com-
pensated result as shown in Fig.4.

In Fig. 4, the amplitude has been normalized,
sampling period of test system is 0.02 ms. From the
compensated result we can see that the system re-
sponse after compensation approached the input sig-
nal commendably, the speed of the dynamic re-
sponse was enhanced, and the noises were reduced.

In order to analyze the effect of training samples
on coefficients W, ten groups of input and response
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of analog filter have been sampled by test system
and the average of input and response have been
calculated. Then, the compensators have been ob-
tained by compensation algorithm through those
samples and average, the frequency response of
those compensators and error analysis are shown in
Fig.5 and Fig.6.
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Fig.4 Results of compensation
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Fig.5 Comparation of frequency response

A comparison of the frequency response of the
compensated systems in Fig. 5 shows that the com-

pensator yields a good approximation to the inverse
model of analog filter in the relevant frequency re-
gion, analog filter’ s working frequency bandwidth
has been expanded and its dynamic performance has
been improved. In Fig. 6, we can see the coeffi-
cients W have a less dependence on the input and
output samples of analog filter from 0 to 6 kHz, and
the error between samples’ frequency response and
average’ s frequency response is less than ten per-
cent, that is to say if a sensor’s dynamic model like
the analog filter in Fig. 4 and widening bandwidth
no more than 6 kHz in compensation, the compen-
sation method based on PSO integrated with
FLANN is available and efficient.
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Fig.6 Error analysis of samples’ frequency response

3  Conclusion

The primary outcome of the paper is the develop-
ment of a dynamic compensation algorithm based on
PSO integrated with FLANN to correct sensor’s dy-
namic error caused by its systems limitation. The
dynamic compensation algorithm can realize dynam-
ic compensation without knowing the model of sen-
sor; with this algorithm, we can avoid extra error
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caused by dynamic modeling of sensors. The algo-
rithm has been demonstrated with a second-order
system. It has been shown that the dynamic com-
pensation algorithm based on PSO integrated with
FLANN provides an accurate compensator in the
relevant frequency region. Experimental results,
showing the viability of the proposed algorithm,
were presented.
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