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Fast stereo matching based on edge energy information

Xiaowei An, Youngjoon Han, Hernsoo Hahn
(Dept . of Electronic Engineering, Soongsil University, Seoul 156-743 , Korea)

Abstract: A new improvement is proposed for stereo matching which gives a solution to disparity map in terms of edge ener-
gy. We decompose the stereo matching into three parts: sparse disparity estimation for image-pairs, edge energy model and
final disparity refinement. A three-step procedure is proposed to solve them sequentially. At the first step, we perform an
initial disparity model using the ordering constraint and interpolation to obtain a more efficient sparse disparity space. At the
second step, we apply the energy function by the edge constraints that exist in both images. The last step is a kind of dispari-
ty filling. We determine disparity values in target regions based on global optimization. The proposed three-step simple ste-

reo matching procedure yields excellent quantitative and qualitative results with Middlebury data sets in a fast way.
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Stereo vision has been one of the most extensively
investigated topics in the area of computer vision.
As stereo techniques can convert 2D images to 3D
model, they have been applied to computer graph-
ics, virtual reality or estimation of relative positions
of objects in understanding semantic relationships
among different environments. Reliable depth map
shows the distance of different objects existing in
this world, which has grown in importance in recent
years.

Many approaches have been applied to improving
the matching quality and efficiency, as Scharstein
and Szeliski presented a taxonomy of dense match-
ing methods which gave almost all the classic corre-
spondence algorithms''. Usually the main applica-
tions focus on two categories: local (area) methods
and global (feature) methods. Local methods main-
ly apply the adaptive window which can get the
dense stereo results, but need the expensive compu-
tation. Global approaches usually rely on the energy
minimization framework with the smoothness con-
straint to resolve the ill-posed problem of stereo
matching. Especially, the adoption of the Markov
random field ( MRF) model has brought stereo
matching research to a new era?.

It is trivial to balance the tradeoff between dense
result and cheap computation time, especially if
window containing more pixels may make matching
results unclear in the local areas. To smooth this ob-
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scure, some relative-costs must be computed in low-
texture areas such as normalized cross correlation
(NCC), sum of squared difference (SSD) and sum
of absolute difference (SAD). Those calculations
almost produce coarse results without any edge de-
tails. However, methods based on global features
are applicable to those issues. The framework based
on the graph cuts provided necessary energy minimi-
zation techniques in vision” . Belief propagation®
has attracted much attention due to their excellent
performances. The dynamic programming for stereo
like Baker and Binford paper”’ uses Viterbi algo-
rithm with the occlusion information. They match
the standard image pairs with the new correspond-
ing constraints, but do not consider the simple pro-
cedure explicitly in the real system, eventually algo-
rithm complex dominates in the matching process.

For those issues, an algorithm for simple stereo
matching is developed which produces dense map
with edge constraint details for realtime system.

It consists of the following three processing steps:
(D Sparse disparity estimation for image-pairs; @
Edge energy model; @ Final disparity refinement.

In the first step, we focus on improving the quali-
ty of disparity estimation in total regions including
texture areas. The input image pairs are rectified
pictures that could save the cost of computation. In
the second step, we fix the simple feature—edge as
the corresponding set. This set gives a simple solu-
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tion to the matching constraints. In the final step,
filling the relative disparities improves the efficien-

cy of the nearest disparities.

Before the matching part, some basic knowledge
about epipolar geometry is also presented for facili-
tating the initial understanding.

1 Epipolar geometry
1.1 Epipolar geometry

If the two cameras are C and C’, and a 3D point
X is imaged as shown in Figs. 1 and 2.

x = PX, 2" = PX.

X

PPN

Fig.1 Camera array

Epipolar line

Epipole
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Fig.2 Epipolar geometry

Once obtaining the baseline—the line connecting
C with C’, two epipoles C, and C, will be located

in both images. Given an image point in one view,
we are able to find the corresponding point in the

other view" (Fig.3).

C

Epipolar line
a

Fig.3 Epipolar line

Epipolar geometry is a consequence of the copla-
narity of the camera centers and scene point
(Fig.4).

In order to determine the detailed geometric con-
figuration of the two parallel cameras, it is neces-
sary to take a calibration before the matching algo-

(focal length, image center and lens distortion ).
Calibration refers to the act of evaluating and ad-
justing the precision and accuracy of measurement
equipment in the image pairs processing.

[ Epipolar line

Left view

Epipolar geometry

Fig.4 Rectification

1.2 Triangulation model
After setting the epipolar lines in both images,
relationship between pairs are easily determined un-

der the triangulation constraint:
The set of initial matching costs that are fed into
a stereo matcher’s optimization stage is often called

the disparity space image (DSI)"™.
DSId“ = IL<IL + k’du) - IR(xR’dn) I,

where I, and I are left image and right image re-

spectively; d, is disparity distance.
Fig. 5 shows that the distance of object (Depth) is
inversely proportional to the disparity variance ac-

cording to the triangulation.
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Fig.5 Depth map

2 Coarse disparity estimation

Common point-wise or fixed size block-wise meth-
ods have been used to recover coarse disparity
estimation'® . Since such common methods purely
utilize the point-wise intensity subtraction, which
cannot present the details of the original image,
e.g. edge, texture area and occlusion, our initial
matching uses the new method to simulate the coarse

disparity.
= 1 : height,

J
i =1 width,

rithm in terms of system inner geometric parameters
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Find the i and j position under the condition

minW(j,i,¢) *minV(j,i,t) >0, t =1,2,3.
And then, utilize the obtained i and j in

Coarse DSI, = | I.G,i+d) - Ix(,i) | (2)

Epipolar line

Fig.6 Coarse disparity space
3 Edge energy model

Edge is the intensity difference between neigh-
bouring pixels. It shows the property of the deriva-
tive in the image target areas .

To illustrate the edge effect and performance we
adopt the edge energy model to accumulate the edge
derivative as

E(D) = Edam(D> + Eudgcsmmh(D)a (3>

where E (D) is energy of each disparity, and our
task is to find the minimum of the Energy; D is dis-
parity values; Eg, (D) is data difference between
left and right images.

According to Eq. (2), there is

E.(D) = Coarse DSI a

In Eq. (3), Egesoomn (D) considers point-wise con-
tinuous in the scene. It controls disparity derivative,
and large variation exists only at depth border.
Coarse disparity space is generally ambiguous.

Matches can easily have a wrong cost instead of cor-
rect ones for the reason of noise.

Here we accept the image model exp( — C/T).
This model facilitates the accuracy of the coarse dis-
parity space.

Ecdgcsoomth ( I) ) — e - E“e'ighl")”ring (D)-¢iT . ( 4 )

where C and T are smooth parameters. C stands
for weight-balance, which makes E(D) always pos-
itive; T is the intensity truncation value, and let
T=25.

So the total energy can be transformed as

e—E(D)-(‘/T _ e—Edm(D)'(‘/T % e’Emaghwang(D)‘C/T_ (5)

If edge exists between x and x —1 position:

e*(’-(}).vl(j,;l',({lil )T — e*("Summ\’l(jq,4'*1.1117] )T

X
e —c+Csmooth(j,2)+C|T ,

7 = 1°: height, x = 1 width,

where d, is the x position disparity, d,_, is the x — 1
position disparity; Cost sepresents the total data
difference; Sumcost represents the edge accumula-
tion; Csmooth is the gradient space of original right
(left) image.

C‘WnOOth(j’i> :l IL(]’Z + 1) - IL(],Z> | or
| Ig(Gyi + 1) = Ix(5,4) |,

Otherwise:

—c+Cost(d 1 T —c* Sumcost (x—1,d
e < = e

L DIT (6)
4 Final disparity refinement

The sparse disparity image consists of some ambi-
guities. Furthermore, there are areas of invalid val-
ues need to be recovered, which can be handled by
post-processing of the disparity image. For exam-
ple, one of the most noteworthy features og stereo
matching problem is the physical surface in untex-
tured areas """’ . e.g. green dotted circles.

Fig.7 Gradient smooth space

In order to reduce the ambiguities, we assume:
1) All the untextured areas eepth values similar;
2) Untextured areas own some visible textures;
3) One textured area only own one depth value.
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The reasons for those assumptions are that discon-
tinuities occur with texture visible in the disparity
space. Otherwise we cannot find the features.

5 Experiment and results

Edge energy model (EEM) has been tested on
Middlebury web stereo image pairs. All the experi-
mental activity was supported by the rectified inputs
(Fig.8).

(d) Venus image-sets
Fig.8 Matching results
Tsukuba 3D display is shown in Fig.9.
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Fig.9 3D display

Table 1 Time cost

o Tsukuda (384 * 284)
Similar P "
Accuracy Adaptive window method ropose
algorithm
Time cost 2s 1.1s
Teddy (384 * 284)
Similar P "
Accuracy Adaptive window method ropose
algorithm
Time cost 3.5s 2.5s
venus(434 x 383)
Similar b q
accuracy Adaptive window method ropose
algorithm
Time cost 2.8s 1.6
Door (311 * 275)
Similar b q
accuracy Adaptive window method ropf)se
algorithm
Time cost 1.6 0.95s

6 Conclusion

A fast edge energy process is presented which has
been tested on rectified stereo image pairs. In this
model, energy function was formulated with edge
properties. Due to its fast computational power,
simulating results have verified that the proposed
method could get a high accuracy during the short
time.
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