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Abstract — This paper mainly discusses stabilizatbility, exact observ-
ability and exact detectability of discrete stochastic systems with both
static and control dependent noise via the spectrum technique. The
authors put forward a definition of the spectrum and give some theo-
rems based on the spectrum. Then the relation between discrete gen-
eralized Lyapunov equation and discrete generalized algebraic Riccati
equation is also analyzed.
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1 Introduction

It is well-known stabilizability is an important con-
cept in mordern control theory. Meanwhile, observability
and detectability are also essential concepts in linear con-
trol theory. In deterministic systems, observability and the
detectability of a system are equivalent to controllability
and stabilizability of its dual system respectively. In recent
years, some fundamental concepts of deterministic system
theory have been extended to stochastic I systems by
many rescarchers .

For example, stochastic stabilizability is an essential
assumption in many problems, such as infinite horizon
stochastic optimal control problem", and the definitions
of stochastic observability and detectability have been in-
vestigated extensively by many researchers, see
Ref.[4-11]. Especially”” , extended complete observabili-
ty to define “exact observability” of stochastic Iz system.
In Ref.[6], the notion of observability leads to the sto-
chastic version of the well-known rank criterion for ob-
servability of deterministic linear systems. Moreover, in
order to generalize the results of stochastic H,/H.. control
theory to more general model with control or external dis-
turbance dependent noise, the concept of exact detect-
ability was introduced in Ref.[8].

As mentioned to the spectrum technique, it has been
researched a lot in deterministic time-invariant system and
the thoery is much more mature. In recent decades, some
researchers have extended the spectrum technique to sto-
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chastic I system and different spectrum criterias for mean
square stabilization and stability are also given™”'"'"?'. In
Ref.[7], the authors used the spectrum technique to study
the stabilization and detectability of stochastic Iz system.
Ref. [10] studied the stabilizability and exact observability
of stochastic Ito systems with the aid of spectrum. But
there are seldom studies for discrete stochastic systems via
the spectrum technique.

In this paper, we mainly study the stabilizability, ex-
act observability and exact detectability of the discrete sto-
chastic system via the spectrum technique. Without loss of
generality, we consider the following stochastic system
with single nosie input:

Jx(k +1) = [Ax(k) + Bu(k)] +

< [Cx(k) + Du(k)]w(k), (1)

(2(0) = 2y € R", k = 1,2,3,1n.
where (k) € R" , u(k) € R" are the system state and
the control, respectively. A, B, C,D are constant matrices
of appropriate dimensions. w(k) € R is a sequences of
real random variables defined on a complete probability
space (Q2,F,p) , which is a wide sense stationary, sec-
ond-order processes with E(w(k)) = 0 and
E(w(i)w(j)) = 8,. And 0; refers to the Kronecker
function, i.e. ; = 1,if i = jand o, =0, if i 7.

On the other hand, we discuss the relation between
generalized Lyapunov Equation (GLE) and Generalized
Algebraic Riccati Equation (GARE). It is generally
known that Lyapunov equation is useful in describing sta-
bility and stabilizability of deterministic systems. The clas-
sical results of traditional Lyapunov equation are extended
to GLE by some researchers in the stochastic
systems """ The Generalized Algebraic Riccati Equation
(GARE) plays a pivotal role in the problem of indefinite
stochastic linear quadratic optimal control and has been
studied by some researchers '’ .

For convenience, we adopt the following notations:
we use 5" to denote the set of all n X n symmetric matri-
ces; its components may be complex. A, A" represent
the transpose and complex conjugate transpose, respec-
tively. P —= (> 0) means P is a semi-positive (positive)
definite matrix. We use (L) to denote its spectral set of
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the operator or matrix L. The symbol p,q where p and ¢
are two integers denotes the set {p,p +1,-++,¢}. Finally,
we define a circular region: C® = {s:| s 1< 1} .

2 Spectrum of discrete stochastic systems

In this section, we give the definition of the spectrum
and obtain the criterion for unremovable spectrum.

Considering system (1), for any & € 1,N, taking
X(k) = Elx(k)x(k)"] with state feedback control
u(k) = Kx(k), we obtain the following equation:

X(k+1) =(A+ BK)X(k)(A + BK) +
(C+ DK)X(k)(C+ DK)'". (2)
Inspired by Eq. (2) we give a definition of a linear opera-
tor and its spectrum.

Definition 1: For any feedback gain matrix K, we
define a linear operator I', associated with the discrete sto-
chastic system (1) as follows:

I, =(A+ BK)Z(A + BK) +
(C+DK)Z(C + DK)’, (3)
where Z € S" and the spectral set of I}, is the set defined
by

o(l,) = A I T(Z) = M,2#0, Z€ S'|. (4)

Remark 1: It is easily seen that the following opera-
tor I, = (A + BK)Z(A + BK) + (C + DK)Z(C +
DK)Z € S", is the adjoint operator of I', with the inner
product < X,Y >= trace( X" Y) forany X, Y € S". As
we limit the coefficients to real matrices, so o(I", ) =
o(T,).

Associated with the definition of spectrum, we give
another definition of unremovable spectrum, which is an
extended form of the stochastic I differential system ™"

Definition 2: A is an unremovable spectrum of dis-
crete stochastic system (1) with state feedback control
u(k) = Kx(k), if there exists Z %0 € S, such that for
any K € R"™".

(A+ BK)Z(A + BK) +
(C+DK)Z(C+DK) = AZ. (5)

Below we give a criterion for the unremovable spec-
trum.

Theorem 1: A is an unremovable spectrum of system
(1) if there exists Z # 0 € S" , such that the following
three equalities

AZA +CZC = 2Z, AZB + CZD = 0,
BZB + D7D = 0.
hold.
Proof: It is easy to see that Eq. (5) can be written as
AZA + CZC + (AZB + CZD)K +
K'(AZB + CZD) + K'(BZB + DZD)K = AZ,(6)
and the sufficiency is easily proven. In order to complete
the proof, let K = 0in Eq.(5), then
AZA +CZC = XZ. (7)
holds. From the proof of sufficient part, it follows
(AZB + CZD)K + K'(AZB + CZD)" +
K'(BZB + DZD)K = 0. (8)
Let AZB + CZD = F, BZB + DZD = G, then Eq. (8)

becomes

FK + K'F' =— K'GK. 9)
Since the left hand of Eq. (9) is linear with K, we must
have G = 0. Because of the arbitrarity of K, we can ob-
tain =0 immediately by taking K = F". So we complete
the proof of this theorem.

3 Stabilizability of discrete stochastic sys-
tems

Below, we deal with the stabilizability of discrete sto-
chastic system via the spectrum technique. In order to ob-
tain the results on stabilizability, we firstly cite the fol-
lowing definitions:

Definition 3" :
time system

x(k +1) = Ax(k) + Cx(k)w(k) (10)
is called mean square stable if for any x, € R", the corre-
sponding state satisfies lim | Ex(k) || . If system (10) is
stable, we also say (A ,C) is stable for short.

Definition 4" ; Stochastic system (1) is called stabi-
lizable (in the mean square sense) if there exists a feed-
back control u(k)=Kx(k), such that for any x, € R",
system (1) is mean square stable, i.e. ,}Lr?o | Ex (k) |? =
0.

The following stochastic discrete-

It is well-known that system x(& + 1) = Ax(k) +
Bu (k) is stabilizable if 6(A + HK) € C¥, where u(k) =
Kz (k). Now we give the following theorem for stochastic
case via the spectrum technique.
Theorem 2: The discrete stochastic system (1) is sta-
bilizable if o(I},) € C".
Proof: We have obtained that for any # € 1,N, the
following equation holds:
jX(/Q +1) = (A+ BK)X(k)(A + BK)" +
o (C+ DK)X(R)(C+ DK)", (11)
LX(0) = 2(0)2(0).
Since X(k) € S, for any X = (Ex,a;),., = (X;,. €

S", if we denote

~

/
X = (Xll,Xlz""»Xln,Xzza"',-sz""Xm) ’

n(nt+l) n(n+l)
R 2 2

then there exists a unique matrix I', € , that

we can rewrite equation (11) as

Xk + 1) = LX), X(O0) = X,
Obviously
lim | Ex (k) |I” = 0= [mX(k) = 0=>0(I}) € C°.

This is obtained mainly because of the basic theory of
deterministic systems. By Definition 1, it is easily proven

that o(I7,) = o(I}), so the proof of Theorem 2 is com-
pleted.

Remark 2: By Remark 1 and Theorem 2, it is easily
seen system (1) is stabilizable iff there exists a K € R"™",
such that o(I", ) € CY.

In order to illustrate the spectrum and the proof of
Theorem 2, we give an example as follows:
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Example 1: In system (1), we let

7-0.5 0.1 710
A= 0.2 —0.5}’ B = [0 it
702 07 ., 0.2 0 710
c=1% o= ol k=l 1)
Then by a simple calculation, we obtain
N Xy (e +1)7
X5, (k +1)
[0.41 0.1 0.01] [Xu (k)
0.1 0.27 0.05] | Xn(k)|.
0.04 0.2 0.25] [ X, (k)

By a simple computation, we have
o(I,) = o(I,) = {0.4817,0.3008,0. 1474} .

4 Exact observability and exact detecabili-
ty
Next, we discuss exact observability and exact detect-
ability of the discrete stochastic system (1). Before start-
ing the discussion, we firstly give a definition of exact ob-
servability similarly to Definition 5 of Ref.[10].
Definition 5: Consider the following discrete stochas-
tic system with measurement equation
x2(k+1) = Ax(k) + Cx(k)uk),
<x2(0) = 2y € R",
(k) = Uek).
We call x¢ R" an unobservable state, if for V£ €

1,N, the corresponding output response always equals
zero. Stochastic system (12) is called exactly observable,
if there is no unobservable state except zero initial state,
i.e. if y(k) =0, als. Yk € 1,N=>z, = 0. For simplici-
ty, when system (12) is exactly ocservable, we also say
[A,C|U] is exactly observable.

The following theorem give a criterion for exact ob-
servability of the discrete stochastic system (12).

Theorem 3: [A,C | U] is exactly observable if there
doesn’t exist Z # 0 € S, such that

(12)

AZA + CAC = M2, UZ = 0. (13)
Proof: For any # € 1,N, we have
X(k+1) = AX(R)A"+ CX(k)C,
X(0) = 292y (14)

By Definition 5, we know that [A,C | U] is exactly ob-
servable if for any arbitrary X, = xyx, 70, there exists a

k € 1,N such that
Y(k) = Ely(R)y(k)'] = UX(R)U =#0. (15)
From the proof of Theorem 2, Eq. (14) is equivalent to

X(k+1) =T(A,C)X(k),
where I'(A, C) is induced by matrices A and C. In addit-

ion, due to X(k) =0 for all # € 1,N, so Eq. (15) is
equivalent to

Y, (k) = U(k) #0, (16)
which is equivalent to
Y, () = ['\X(k) #0. (17)

So Eq. (12) is exactly observable if the deterministic sys-
tem

JX(/e + 1) = P(A C)X(k),

Vi) = DX (k).
is completely observable. By the deterministic theory,
(18) is completely observable if there doesn’t exists an eig-
envector & 7 0 VVlth n(n+1)/2 dlmenswns such that

F(A C)E = A&, Fué =0. (19)

Obviously, Eq. (19) is equivalent to that there doesn’t

exists Z # 0 € S" satisfying Eq. (13); the proof is com-
pleted.

Then we give the following example to demonstrate

(18)

the notion of I .

Example 2: In Eq. (16), take

~ [yu(k) yu(k) 705 0.2
Y. (k) = {yzl(k) )’22(]()}’ U= [0.7 —0.3}’
Xu(k) x12<k)
X(k) = LClz<k> Xzz(k>] (20)
From Y, (k) = U;((k), we have
yu (k) = 0.52, (k) +0.22,(k),
Jylz(k) =0.52,(k) +0.22, (k), 21)
\{yzm = 0.72, (k) — 0.32,(k),
(k) = 0.7Txp (k) —0.325 (k).

Then Eq. (21) can be written in the matrix form as

0.5 0.2 0
s o0 05 02 %,
0 0.7 -0.
0.5 0.2 0
= 0o 05 02
0 Fv="To7 —03 o
0 0.7 -0.

Now, we give the following definition of exact de-
tectability of the discrete stochastic system (12).

Definition 6: System (12) or [A,C | U] is said to be
exactly detectable, if y(£) =0, a.s, for any # € 1, N im-
plies lim | Ex(k) 2.

Definition 6 means that when the measurement out-
put is identically zero, the corresponding state is asymp-
totically mean square stable. Next, we give the following
stochastic PBH criterion for exact detectability in discrete
case.

Theorem 4: [A,C | U] is exactly detectable if there
does not exist Z 7 0 € R" such that

AZA + CZC = 2Z, | A I>=1,
Uz = 0.

Proof: The proof is quite similar to Theorem 3 and

thus omitted.

5 Relation between GLE and GARE

(22)

In this section, we consider the relation between
GLE of the closed-loop discrete stochastic systems and
GARE resulting from the discrete stochastic LQ control.



390 Journal of Measurement Science and Instrumentation

No. 4 2010

The following GLE of closed-loop system (1) with
state feedback control « (k) = Kx(k) is considered:
P =(A+ BK)P(A + BK) +
(C+ DK)P(C+ DK) + Q, (23)
where Q = 0.
On the other hand, for system (1), the cost function
in discrete LQ control is determined by

J(xy,u) 1= ZEMk)Qx(/e) +u’ (k)Ru(k)],

(24)
where R > 0.
The following discrete GARE is important in discrete
LQ control:
P=APA+CPC+Q - (APB+ CPD) -
1(R+ BPB+ DPD) ' (APB+ CPD), (25)
LR + BPB+ DPD > 0.
In Ref.[11], it has shown under the assumptions of stabi-
lizability and exact observability, the optimal control and
the optimal value are associated with Eq. (25).
Then we give a theorem on relation between the
above GLE and GARE:
Theorem 5: Define F} is the solution set of Eq. (23)
and S, is the solution set of Eq.(25), then F, = S;.
Proof: Let P € Sy, then 3Q = 0and R > 0 such
that Eq. (25) holds. Then we define the matrix K in
Eq. (23) as
K =—(R+ BPB+DPD)"'(APB+ CPD)". (26)
After some manipulations, Eq.(25) can be written as
P = (A + BK)P(A + BK) +
L (C+DK)P(C+DK)+Q+ KRK, (27)
LR + BPB + D'PD > 0.
Because R >0, it is easily to see that Q + F'RF =0, then
Eq.(27) is a GLE. Therefore P € F,=F, 2 S;.
Theorem 5 means that the set of all matrices that sat-
isfy GLE of the closed-loop discrete system contains the
set of all matrices that satisy the discrete GARE construct-
ed by the discrete stochastic LQ problem.

6 Conclusions

In this paper, we have studied the stabilizability, ex-
act observability and exact detectability of discrete sto-
chastic systems via the spectrum technique. The necessary
and sufficient conditions for unremovable spectrum, the
stabilizability, exact detectability, exact observability of
discrete stochastic system are presented by means of the
spectrum of operator I', respectively. Moreover, we con-

sider the relation on solution between GLE and GARE.
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